PACILITY FORM 602	(ACCESSION ROMBER) (PAGES) CR-54/0/ (NASA CR OR TMX OR AD NUMBER)	(CODE)

VOLUME 3

BRUSHLESS ROTATING ELECTRICAL GENERATORS FOR SPACE AUXILIARY POWER SYSTEMS

by

J. N. Ellis and F. A. Collins

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

CONTRACT NO. NAS 3-2783

OTS PRICE

XEROX

\$ 6.00 FS

MICROFILM

1.25 mf.

 $LEAR\ SIEGLER, INC$

POWER EQUIPMENT DIVISION

NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the National Aeronautics and Space Administration (NASA), nor any person acting on behalf of NASA:

- A.) Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- B.) Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process disclosed in this report.

As used above, "person acting on behalf of NASA" includes any employee or contractor of NASA, or employee of such contractor, to the extent that such employee or contractor of NASA, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with NASA, or his employment with such contractor.

Requests for copies of this report should be referred to:

National Aeronautics and Space Administration
Office of Scientific and Technical Information
Washington 25, D.C.
Attention: AFSS-A

THIRD QUARTERLY REPORT

July 15, 1964

BRUSHLESS ROTATING ELECTRICAL GENERATORS FOR SPACE AUXILIARY POWER SYSTEMS

Contract No. NAS 3-2783

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

by

J. N. Ellis and F. A. Collins

Technical Management
Howard A. Shumaker
NASA Lewis Research Center
Space Power System Division
Solar and Chemical Power Branch

LEAR SIEGLER, INC.
Power Equipment Division
Cleveland, Ohio

TABLE OF CONTENTS

Summary	1
Introduction	2
Work Being Accomplished	3
Contents of Next Report	5
Design Manual for Two-Coil, Inside-Coil Lundell or Bekey-Robinson Generator	Section A
Design Manual for Two-Coil, Outside-Coil Lundell Generator	Section E
Design Manual for Single-Coil, Outside-Coil Lundell Generator	Section C
Design Manual for Rotating-Coil Lundell (Automotive Type)	Section D
Design Manual for Inside-Coil, Stationary-Coil Lundell	Section E
Design Manual for Permanent- Magnet AC Generators	Section F
Design Manual for Homopolar Inductor AC Generators	Section G
Design Manual for Disk-Type or Axial Air-Gap Lundell Generator	Section H
Synchronous AC Generator Equivalent Circuits	Section I

SUMMARY

31715

In this quarterly report, design manuals and Fortran computer programs are presented for the following AC generators:

- 1. Two-Coil, Inside-Coil Lundell or Becky-Robinson Generator
- 2. Two-Coil, Outside-Coil Lundell
- 3. Single-Coil, Outside Coil Lundell
- 4. Rotating-Coil Lundell (Automotive Type)
- 5. Inside-Coil, Stationary-Coil Lundell.

Design manuals without computer programs are presented for:

- 6. Permanent-Magnet AC Generators
- 7. Homopolar Inductor AC Generators
- 8. Disk-Type or Axial Air-Gap Lundell Generator

An equivalent circuit representation of synchronous AC generators is published with a discussion of its development.

THE NEXT REPORT

The next report is the final report, to be issued in October, and it will consist of two parts. The first part is generator selection criteria and the second part is the electrical design section.

In the first section, the selection criteria, comparison data will be published. Such data will be weight and physical size comparison, evaluations of rotor dynamics, suitability of the various types of generator rotors for use with gas or liquid bearings. Thermal equivalent circuits are to be published in the selection section also.

The second section of the final report will contain the generator design manuals with the Fortran computer programs and the synchronous generator equivalent circuits.

An appendix will be published containing the small studies, discussions and derivations that support the rest of the study.

For each generator design manual, a general approach to the start of a generator design will be provided. It will be similar to that provided for permanent magnet generators in this third quarterly report. Beyond this general approach, the user must select the various design parameters himself. The user of these programs should have some familiarity with AC machine design.

In this, the third quarterly report, Fortran computer programs and design manuals are published for the following AC generators:

- 1. Two-Coil, Inside-Coil Lundell or Becky-Robinson Generator
- 2. Two-Coil, Outside-Coil Lundell Generator
- 3. Single-Coil, Outside-Coil Lundell Generator
- 4. Rotating-Coil Lundell (Automotive-Type) Generator
- 5. Inside-Coil, Stationary-Coil, Lundell Generator

Design manuals without computer programs are published for:

- 6. Permanent-Magnet AC Generators
- 7. Homopolar Inductor AC Generators
- 8. Axial Air-Gap Lundell Generators

The last three design manuals are to be programmed in Fortran for the final report. And, in addition, a program for Induction generators will be included if time on this contract permits.

Because of the general and widely understood use of the term Lundell, all of the generators discussed in this study that have claw-type or interlocking, finger-type poles are called Lundell generators. To most engineers, the name Lundell describes the rotor pole arrangement. In this report, there is no other basis for the use of the name.

NOTE ON WINDAGE CALCULATIONS

In each design manual there is a statement to the effect that there is no known satisfactory method of calculating windage. That, of course, is open to challenge and probably should read "we know of no....". The formula given is crude and is only intended for use in standard air.

For gases or fluids other than standard air, the fluid density and viscosity must be considered. The formula given in the manual can be modified by the factors

$$\left(\underbrace{\mathcal{C}}_{.0765}\right)^{-8} \left(\underbrace{\begin{array}{c} u \\ .0435 \end{array}}\right) \cdot 2$$

where

$$\mathcal{C}$$
 = density - Lbs FT⁻³

$$\mathcal{M} = \text{viscosity LBS FT}^{-1} \text{ HR}^{-1}$$

$$.0765$$
 = density std. air

The above relationship can be arrived at by referring to Shepherd "Principles of Turbomachinery", Macmillan Pub. Company. See page 152. The friction factor for turbulent flow is a function of $\frac{1}{(R_e)}$. 2 and the loss is a function of $\frac{C}{(R_e)}$. 2 times a constant for a fixed velocity and fixed dimensions. The correction for a gas other than standard air, since $R_e = \frac{DV}{u}$, would be

$$\frac{\mathcal{C}}{\mathcal{C}_{air}} \cdot \left(\frac{\mathcal{C}_{air}}{\mathcal{C}}\right)^{.2} \cdot \left(\frac{u}{u_{air}}\right)^{.2} \quad \text{or } \left(\frac{\mathcal{C}}{.0765}\right)^{.8} \cdot \left(\frac{u}{.0435}\right)^{.2}$$

A person unfamiliar with electrical machine design would benefit from a synthesis program that selected the design parameters for the design program inputs, but the time available on this contract does not allow its development.

HOMOPOLAR-INDUCTOR AC GENERATORS

HOMOPOLAR INDUCTOR, AC GENERATOR

Before 1900 in the young age of electrical power engineering, many different generator designs were proposed and patented. One of those old designs, widely used since its conception, is described in U.S. Patent No. 499446 issued to William Stanley, Jr. and John F. Kelly in 1893.

The same configuration is now made by every company building homopolar inductor AC generators.

The AC generator known as the homopolar inductor is confused in the literature with a DC generator that is also called a homopolar inductor. The DC generator is called both a unipolar generator and an acyclic generator to distinguish it from the AC machine. A paper given by B. G. Lamme, AIEE Transactions 1912, PP 1811-1835, describes the development problems of a 2000 KW acyclic (DC) generator. The acyclic generators are of interest for generating the high direct currents needed for pumping liquid metals but are not discussed in this study.

SMALL HOMOPOLAR INDUCTOR GENERATOR

The homopolar inductor, AC generator uses two identical wound stators and two identical rotor sections to produce AC electrical power.

The magnetic flux from the rotor poles passing through each stator section and linking the output windings, is unidirectional and pulsating. Since the magnetic flux never changes direction in a stator and the poles of a rotor section are of one polarity, the generator has been called a homopolar generator (or alike-pole generator).

W. STANLY, Jr. & J. F. KELLY.
ALTERNATING CURRENT GENERATOR.

The usual homopolar inductor consists of two identical stators wound with a common winding, a double rotor having all north poles on one end and all south poles on the other end, and a field coil enclosed in the magnetic path formed by the outer shell or yoke, the stators, and the rotor.

When the field coil is excited and the rotor is rotating, unidirectional fields of flux cut the windings of each stator in such a manner that approximately the same voltage is generated in the two stator combined as would be generated in one stator by a single rotor having both the north and south poles of the two ends of the homopolar inductor rotor. In other words, two stators and two rotor ends are electrically and magnetically accomplishing what one stator and its corresponding rotor would do in a conventional salient-pole, synchronous, wound-field generator.

The homopolar inductor alternator has been known and used for approximately seventy (70) years. During this time it has been used mainly in industrial applications where size and weight were of little consequence. One of its uses has been to supply high frequency electrical power for induction heating of steel products.

Homopolar inductor designs used in industrial applications have poles, or rotor teeth as they are often called, protruding far out of the shaft so that only a very small amount of unwanted flux passes from the shaft to the stator between the poles of a single polarity (on one end of the stator.)

Recently, the homopolar inductor is being used in airborne and space applications where size and weight are of primary importance. In these applications the area of the shaft between the two groups of poles of opposite polarities directly limits the maximum output of the machine. In these minimum weight designs, the shaft is the largest diameter practicable and the poles or rotor teeth do not protrude far from the shaft. The unwanted flux passing from the shaft to the stator in the region between poles of like polarity is significant. It is of the order of several percent in a practical, useable design. This unwanted flux generates a voltage opposite to the output voltage in the output windings and reduces the output of the machine.

VIEW OF A 4-POLE HOMOFOLAR INDUCTOR

View showing a conventional four-pole, homopolar inductor rotor with approximately the proportions that might be used for maximum output

View of the rotor shown at the top of the page after removal of excess metal to improve the output of the generator Advantages of the homopolar inductor generator for use in space power systems are:

- 1. It is simple in design and inherently reliable.
- 2. The homopolar rotor has high strength and can be used for high rotational speeds if bearing problems permit.
- 3. At lower speeds the rotors can be laminated to remove the output limits imposed by pole-face losses.

Disadvantages of the machine for the same applications are:

- 1. It is a heavy machine -- the heaviest of all of the AC generators if compared at the same rpm.
- 2. Stator protection problems are compounded by the two stators when used in a hostile environment.
- 2. The solid pole faces limit the output unless the poles are treated to reduce the pole-face losses.
- 4. The long, double rotor is sometimes not as stiff as desirable for high-speed applications where fluid or gas bearings are used.

NOTICE

The design procedure given here has not been checked yet. For the final report a design calculation will be compared against test data and the errors in procedure, etc., will be corrected.

The numbers and general arrangement for a computer program are used and the program will be in the final report.

HOMOPOLAR INDUCTOR A-C GENERATOR

KVA% PF	Volts	Amps.	FII •	Cycles	
-			Date		
STATOR		17.7			To.
PUNCHING I. D.			PLXIC		i
PUNCHING O. D.					
CORE LENGTH		-	and the state of t	and the second s	
DB\$ x 2		4		- i	Ą
SLOTS		,		-	
SIZE SLOTS		- ³ 1	1	عند.	م
CARTER COEFF.		▼	. t		T .,
TYPE WDG.					
THROW			-		
SKEW & DIST. FACT.			D X C	J	U
CHORD FACT				-	
COND. PER SLOT		`			_ \
TOTAL EFF. COND.				7	
COND. SIZE					
COND. AREA		İ			
CURRENT DENSITY					
WDG. CONSTC1	1		 1		
TOTAL FLUX	1	SLOT			
GAP AREA			Fiel	d turns	
GAP DENSITY			COND. S	IZE	
POLE CONST.				REA	
FLUX PER POLE			1 1	URN	
TOOTH PITCH			RES •	0	
TOOTH DENSITY					 -
CORE DENSITY	•		1/21040		
GRADE OF IRON			% LOAD		-+
1/2 MEAN TURN			AMPS.	+	
RES. PER PH. •0			VOLTS AMPS /IN	. 2	
EDDY FACT. TOP				EAK. REACT.	
EDDY FACT. BOT.				ELF INDUCT.	
DEMAG. FACT. CmCq				EAK. XDd	
AMP. COND. PER IN.			DAIRO . L	LAN. AUG	
REACT. FACTOR					
COND. PERM.	•				
END PERM.	i				
LEAKAGE REACT.	1				
AIR GAP PERM.	l l				
REACT, OF ARM Xad Xaq					

ROTOR	
SINGLE GAP Ge	_
ROTOR DIAMETER	
PERIPHERAL SPEED	
POLE PITCH ~	_
POLE AREA	
POLE DENSITY	
GRADE OF IRON	

4	AP	1
4		

Los	SES-EF	FICIENCY	
% LOAD			
F&W			
STA. TEETH			
STA. CORE			
POLE FACE			
DAMPER			
STA I ² R			
FDDY			
ROT. I ² R			
£ LOSSES			
RATING			
RTG+LOSS			
% L0SS			
% EFF			

SYNCH. Xd	_ Xq
NSAT TRANS.	
AT. TRANS.	
UBTRANS. Xd	χt
EG. SEQUENCE	
ZERO SEQUENCE	
OPEN CIRC. TIME CON.	
ARM TIME CON.	
RANS. TIME CON.	
SUBTRANS. TIME CON.	

(b) Constant Slot Width

(c) Constant Tooth Width

(d) Round Slots

Fig 1

TABLE - 1

1964 1964	-	+	-	+					_	<u> </u>	_																						•	-										
10 10 10 10 10 10 10 10	L	L			1/2							\$8			993	139		618		930	113	484	405	778	809	356	995	162	9/0	637	577	Ž . 8	\$ 8°	262	292		333	997	187	849	īī	55	\$	83
1,	L	\perp	L	L	L	L	Ш			20	L		ફ્રિ	34.	998	225	382	726	b5 1		<u>8</u>	952	829	546	951	025	465	525	33	905	8,8	9 3	1 2	844	273	0	297	721	171	407	484	13	894	589
12 12 12 13 13 14 15 15 15 15 15 15 15	L					% 32					\$	3	809	309	1.0	309	500	809	309	0	309	901	809	301		8	3	8	\$	0	00 0		2 2	0		Š	305	9	0	60	60	হ্ল	2	6
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Γ	Т	Т			Г			%			529	2	3		259	79	īĝ	96	331	33	\$	181	55	SS	<u>~</u>	#	Ē	₹	\$	ē 1	<u>אַ</u>	ē	3	悫	162	94	813	55	35	38	팔	3	듳
10 10 10 10 10 10 10 10			1	T		\vdash	П	1	_	12	T	2	33	¥	Ž	88	Loy	94	4	3	8	L	35	16 5	83 5	0	2	2	3	2	20 0	ĝi j	5 2	2	2	2	3	89	53.5	<u>= 31</u>	53	녌	8	£
19 19 19 19 19 19 19 19		†	\top	1-	†-	t	\vdash			=	3	7	39	25	5 99	29/5	1 85	4	711	36	2	20	81 9	2 2	(1)	<u>~</u>	4	2	52	2	20 0	2 C	4 19	2 2	2	16	12	581	68	7 7	3	13	3	5
1, 2, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		15	াভ	10	12	72	81	12	Į,	75	3	919	99	0	675	9 95	0 3	579	33	9	9	9	0 8	4 7	0	8	65	5	칅	3	38 8	<u>۶</u> ج	9 19	1.0	2			85 9	16	721	8	6	'ह	\$
15 15 15 15 15 15 15 15	+	4,	*	9	86	6	12	£ .	₹	<u>.</u>	3	90	18	6.0	7 8	8 8	9	18	88	0.7	88	2	0 /	98 9	7 86	9	18	8	Ö	<u>8</u>	8 3	<u>ۆراخ</u>	8	9	88	38	00	386	98'	9	98	8	0	10/2
1,	-	╀	╀	+	┼	-	Н	\dashv		5	2	2	189	5.5	50	3 98	5	6.45	398	6,70	35	589	, 89	151/2	70	8	45	145	8	2	<u>2</u>	8	5 ,≥	100	386	55	ūSt	98	70	75	84	84	2	62
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	\vdash	+	╀	1_	igapha	_	\sqcup				┞_	12		<u>-</u>	69	199	50	<u>*</u>	6		00	83	94	82 2	54	0	28	8	3	8	۱ _۱ δ	ě 6	, X	Š	66	269	17	88	84	127	8	993	દ્વ	*
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	L	1	L	<u> </u>	L	<u> </u>	Ш		17,		L	5	84	195	39	166	<u> </u>		\$	831	90	752	981	744	445	98	752	8	3	5,	2 2	ورا م	3	₹,	841	841	195	99	98	355	32,	3.	831	590
1,	L	L	L		L			17/51				717	90.	ī	623	1.0	623	์ม	106	407	222	623	1.0	623	222	901	106	22	623	9	623	7 8	9,	77	623	0.	53	222	9	106	222	23	9	23
1,							13/18					722	906	254	574	946	707	687	818	3	423	423	996	819	987	707	396	24	25	906	8 8	ត្រូវ	, j	2	282	919	99	123	13	79(9.6	1	5	38
15 15 15 15 15 15 15 15	Γ		Γ			35					3	*	ŧ	30	500	818	804	105	699		699	9	*	178	900	Š	į	3	8	9	8 5	5 2	3	0	53	00	\$	78	8	60	141	팔	ष्ट	डि
1,	Γ	T		1	T	Ė	П	П		250	Ť	ž	98	3	7		38	131	'n	8	302	9	43	186	12.	0	77	48	43	<u>5</u>	5 70	2 2	2 5	179	18	11	42	8	8	11 3	416	8	<u>8</u>	3.5
1,	F	†	T	\top	1/2	T	H		×2.	 	\vdash	18	Z	8	188	724	*	7.69	83	2	1	169	83 6	5 72	7 75	83	23	10	9 22	33	83	<u>. '</u>	5 K	8	6	45	<u>%</u>	3	6 30	3	33.	3	9	7
19 19 19 19 19 19 19 19		T	╁╴	1					-			3	16	*	95 3	6 79	75 4	83 3	8	92.9	979	30∫3	0 3	6	179	2	8	3	2	9	2 3	7 10	ř	3	12	6 22	5.36	338	8	267	7 3.6	쯹	<u>ફ</u>	쑿
19 19 19 19 19 19 19 19	-	十	╁	+	┢	-		7	-	-		17	£	15	7 7	8	8 9	3 6	2	<u>'</u> '	66	7 6	0 9	395	9 96	82 /	<u>-</u> 2	5	5	8	5 29	7 16	2 6	1.5	22	38	-6	1 58	3	1 78	66	.89	<u>S</u>	<u>3</u>
15 15 15 15 15 15 15 15	┢	+-	╁	-	╀┈	-	. 90	\dashv	_		2	16	9	3	4 2			29 9	\$ 05	5	99	بآراه	51 0	1 24	365	&	<u></u>	35	8	8	\$ 3	<u>ڏ</u> ار	8	ار ا	8	39	98	83	250	456	43	934	\$	28
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	<u>{</u>	╀	╀	1/2	├-		<i>%</i>			2	_	12	8	105	517	ואלו	1.0	7/26	12	150	94	₹.	50	174	75	<u>.</u>	2	2	3	3	₹ ,	١	1 3	9	120	Ē	Sog	3	्र¥	중	174	156	2	765
1,		Ļ	Ļ	<u> </u>	L				19/2		Ļ	2	46	55		59	48	84	Ţ	19.	752	96	83(321	321	831	998	752	5	5	8 3	5	2,0	3,3	947	3	556	965	629	981	897	4	195	752
15 15 15 15 15 15 15 15	_	┸	L	$oldsymbol{oldsymbol{oldsymbol{eta}}}$	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$	12/			_		2,8	8	95	588	0.0	288	951	156	38	8	885	951	156	8 9 5	0.0	558	951	451	88	00	, 88 88	5 2	2, 28	00	588	5	Š	588	0.0	885	451	逐	8	00
1/2 1/2	L	┸	L					12/			L	8	98	.29	075	500	901	484	733	223	388	826	0.1	826	365	223	733	489	901	8	53	इहि	३ .इ	523	33	8	90	38	733	123	591	72	9	192
19	L									24,		815	958	€3	116	#	979	998	Baz	34	231	727	586	918	550	0.0	55.0	818	382	121	Ē.	<u> </u>	Z 5	3	1 <u>\$</u>		3	88	38	43	9	\$	99	3
19	ï		%		24		2/18		ě		%	833	35	767	159	159	707	99	396	101	657	58	107	396	166	707	59	8	3	3	3 3	\$ 1	7 3	5	199	199	5	8	5	07	3	3	띍	8
1/12 1/12		Т								7		8	3	992	7%	95	00	195	193	9	88	18	74	45	346	0	茎	44	ŧ	61	8 3	} ;	2 2	8	58	169	199	73.2	13.2	19	5 9/	8	2	줐
19		T	T	1		Н		Ž,	┪			2	×	181	146	0	34	82 7	75	586	97	34 2	10:	34 5	82	75.	3	27	=	70	<u> 원</u>	7 1 5		12	3	03	1/2	129	59	1871	12.34	1	띩	1/2
18			\vdash			lis	H	╧┼	\dashv		e 5	8 19	18	60	90	20	4	607	4 4		14 7	89 44	8	5 4	700	2	8	등	7	<u></u>	31 2 2 2	<u>~ ,</u>	9	12	3	9		5 78	160	66	87.8	<u>\$</u>	일	₹
1,	F	╁	-	\vdash	\vdash	<u></u>		+	3	Н		8	81 9	3 8	5/93		1	9 9	ŭ 1	=	11	31	6 3	sRc	5	(Ø	<u>٥- ا</u>	9	씕	·Š	9/2		9		<u>=</u>	130	3	9 10	55	80	5	訏	홀	ই
1,		╁	┢	0	Н	Н	8	+		. 4	_	8	15 9	S	95	E II	5	52	3 8	36 9	365	5.8	<u> </u>	13	61 Z	55	8	3.9	5	8	× 5	<u> </u>	<u> </u>	18	862	3.48	83	5 35	61	61	낊	<u>&</u> ,	8	98
7.3 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4		╀	┝	8	Н	\vdash	3	-	4	2	9	88.9	8 91	1 8	7 64	£ 3	9	칖	*9	7 86	18	3 98	886	164	7 34	ŏ	*	3	8	8	<u>8</u> 2 , 3	2 2	9 3	Įŏ	*			86	86	38	3	3	8	<u>**</u>
7.5 7.6 7.7 7.7 7.8 7.8 7.8 7.8 7.8 7.8	┡	╀	⊢	\vdash	Ш	-1	-	_	4		21/2	96	198	189	1 70	45	12	12	13	1 70			28	84	70	3	Ē	2	Ž,	2	2 6	- 0	3 8	10	13	Z	X	154	LOL	Ē,	88	8	2	707
7.5 7.6 7.7 7.7 7.7 7.8 7.8 7.8 7.8 7.8	1	╄	 _	Ш				5 1				·				, - I					82	95	1.0	486	326	3	36	9	27	8	۶,,	9 8	\$,\$	90	1,50	Š	123	ō75	398	429	826	3	의	2
7.5 7.6 7.7 7.7 7.8 7.8 7.8 7.8 7.8 7.8	L	上	L		1/1			ì				417	991	44	743	,§	363	ē	ĕ	38	Ę	É	1 26	166	166	\$	743	8	8	≖	۾اڪ		33	476	441	8	928	713	605	383	型	<u></u>	2	3
7.5 7.6 7.7 7.8 7.8 7.8 7.8 7.8 7.8 7.8									ļ	12/2		926	993	940	835	989	500	287	058	174	346	597	766	84	973	0	473	\$	99	597	8 :	و. ا	2.5	8	39	335	3	193	143	96	3	28	8	8
75	Γ	П		\Box		14/5	\exists	1	Ī		100	434	985	451	778	Ŧ	8	407	993	0.0	803	101	286	743	3	2	3	145	21	3	¥ 8	हो	8	0	8	5	88	43 6	99	518	8	쓁	둜	E
7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	Γ						8	T				145	36	366	300	<u>5</u>	2	3	13	159	180	6	59	123	7	ā	필	8	3	2	9 :	3 3	2 2	100	支	2	545	17	8) 48	559	2	팔	읤	~
75	r	Ħ		\Box		1	١	ē	1	7		5 25	64	75	31 9	79	2	8	63	34.	2	8	0	9	25	포	8	8	6 2	31	=	2 1 2 2 1 2	7 2	N X	Ę	13	22	o O	30	17	12	왉	읽	₹ \$
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	\vdash		\vdash	Н	\vdash	\dashv	┩	٦,	Jel	\dashv	\dashv	6 65	688	<u>ئ</u>	64	318	317	2	2	3	77	븹	Sa	틝	4	7	2	2	7	8	9 9	- 10 - 10	16	19,	6	1,8	176	14 EB	15,4	15	74	=	의	Z K
27 28 28 28 28 28 28 28 28 28 28 28 28 28	\vdash	\vdash		H	\vdash	\dashv	+	+	27	اعر	\dashv	6 4	8	<u>8</u>	9	6	30	싞	79	뛼	\$	9	2 19	ī	18	틧	찃	=	25	흵	5 9	<u>د اه</u>	93	100	3	18	148	ιξ	189	66	칠	ঐ	ş	3
	\vdash	Н	\vdash	\vdash	\dashv		\dashv	+	-		اد	7.9	6	36	5	<u>2</u>	20	<u>\$</u>	7	흿	55	3	3	3.23	٥	ö	릐	2	5	3	3	ا إِ	: &	8	12	18	8	166	998	\$	3	5	8	<u>8</u> 0
	<u> </u>	닕				_		1	↲	_	្នា	8	8	28	6	.3	8	8	3	٤	79	Š	45	35	59	<u>اج</u> ا	প্র	S	2	22	<u> </u>	6 1	83	15	777	83	841	434	9%	48	8	8	8	\$
<u>- In to to it </u>	_	3/3			77	3	<u>~</u>	7	*	1/2	ž	9	2			.의	의	$\overline{}$				읩	7.0	<u>,</u> 2	3	္	의,	3	일,	의:			3 6		2			0.	0.	0.	의	9	의	<u>5</u>
<u>ゆーこうするらんのすられーろらしゅ 日にはいいいいがいまままままままままにいいいいは</u>	8	니	7	[2]	4	5	9	7	8	0	의	℀	_	3	5	<u>~</u>	σ	彐	2	2	=	ā	21	2	25	77	53	严	2	2			+ 2	45	15			53	2	5	ङ्ग	3	ল্ডা	159

VALUES OF K_{dn} FOR INTEGRAL-SLOT, 3 ♥ WINDINGS - TABLE 2

h			1	(dn - HAR	MONIC D	STRIBU	ITION FA	CTORS.		
Q=	2	3 ,	4	5	6	7	8	9	10	8
ı	.966	.960	. 958	.957	.957	.957	.956	.955	.955	.955
3	.707	.667	.654	.646	. 644	.642	. 641	. 640	. 639	. 636
5	. 259	. 217	. 205	. 200	. 197	. 195	. 194	. 194	.193	.191
7	259	177	158	~ .149	145	143	141	- 140	140	136
9	707	~ . 333	270	- , 247	- , 236	229	225	-,222	220	212
11	966	177	126	110	/02	097	095	093	092	087
13	966	.217	. 126	, 102	. 092	. 086	. 083	.081	. 079	.073
15	707	-667	.270	. 200	. 172	. 158	. 150	. 145	. 141	.127
17	259	. 960	. 158	. 102	.084	. 075	.070	.066	.064	.056
19	259	.960	205	110	084	072	066	062	060	059
21	.707	. 667	654	247	- ,172	/43	/27	118	//2	091
23	.966	. 217	958	149	092	072	063	057	054	041
25	.966	177	958	.200	./02	. 075	. 063	.056	.052	.038
27	.707	- ,33 <i>3</i>	654	. 646	. 236	. 158	. /27	.111	.101	.07/
29	. 259	177	205	.957	.145	.086	.066	. 056	. 050	. 033
31	259	. 217	. 158	.957	197	097	- 070	057	- ,050	03/

33	709	.667	. 270	.646	644	229	150	118	101	058
35	966	. 960	.126	. 200	- ,957	- , 143	083	062	052	027
37	966	.960	126	149	- ,957	. 195	.095	. 066	. 654	. 026
39	707	.667	- , 270	247	644	.642	.225	.145	.112	.049
41	259	. 217	158	110	197	.957	.141	.081	060	. 623
43	. 259	177	. 205	. 102	. 145	.957	194	093	064	022
45	.707	333	.654	. 200	.236	.642	641	~ . 222	141	042
47	.966	177	.958	. 102	. 102	. 195	956	140	- ,679	020
49	.966	.217	. 958	110	092	143	956	.194	.092	. 019
51	.707	.667	. 654	- , 247	172	229	- ,641	.640	. 220	. 038
53	.259	. 960	. 205	149	084	097	- , 194	.955	.140	.018
55	- , 259	.950	158	. 200	.084	. 086	. 141	,955	193	017
57	707	. 667	- ,270	.646	.172	. /58	, 225	. 640	639	033
59	966	.217	126	,957	.092	. 075	.095	, 194	955	016
61	966	177	.126	.957	102	- , 072	083	140	- ,955	. 016
63	707	333	. 270	. 646	236	- ,143	150	~ , 222	639	.030
65	259	177	. / 58	. 200	145	072	070	093	193	.015

SIZE	BARE	AREA	JL /1000'	SINGLE	HEAVY	SINGLE GLASS	BARE WT.	SINGLE GLASS	DOUBLE GLASS
AWG	DIAMETER	Ω"	@25°C	FORMWAR	FORMVAR	FORMVAR	#/1000	SILICONE	SILICONE
36	.0050	.0000196	424	. 0056	.0060		. 0757		
3 <i>5</i>	.0056	.0000246	338	. 0062	.0066		.0949		
34	.0063	. 0000312	266	.0070	.0074		. 1201		
33	.0071	.0000396	210	.0079	.0084		.1526		
32	.0080	.0000503	165	.0088	.0094	.0121	. 1937		
31	.0089	.0000622	134	. 0097	.0104	.0130	.2398		
30	.0100	.0000785	106	. 0108	.0116	.0142	. 3025	.0132	. 0152
29	.0113	.000100	83.1	.0122	.0130	.0156	. 3866	.0145	.0165
28	.0126	.000125	66.4	.0135	.0144	.0169	. 4806	.0158	.0178
27	.0142	.000158	52.6	.0152	.0161	.0186	.6101	.0174	.0194
26	.0159	.000199	41.7	.0169	.0179	.0203	.7650	.0191	.0211
25	.0179	.000252	33.0	.0190	.0200	. 0224	.970	.0211	.0231
24	. 0201	.000317	26.2	.0213	.0223	.0263	1.223	.0251	0276
23	.0226	.000401	20.7	0238	.0249	.0289	1.546	. 0 2 7 6	.0301
22	.0254	. 000507	16.4	.0266	.0277	.0317	1.937	.0303	. 0328
21	.0285	. 000638	13.0	.0299	.0310	.0349	2.459	.0335	.0360
20	.0320	.000804	10.3	.0334	.0346	. 0384	3.099	.0370	.0395
19	.0360	.00102	8.14	. 0374	. 0386	. 0424	3.900	.0409	.0434
18	. 0403	.00126	6.59	. 0418	.0431	.0468	4.914	.0453	. 0478
. 17	.0453	.00159	5.22	.0469	.0482	.0519	6,213	.0503	.0528
16	.0508	.00204	4.07	.0524	.0538	. 0575	7.812	. 0558	.0583
15	.0571	.00255	3.26	.0588	.0602	.0639	9.87	.0621	. 0646
14	.0641	.00322	2.58	.0659	.0673	.0710	12.44	.0691	.0716
13	.072	.00407	2.04	.0738	.0753	. 0789	15.69	0770	. 0795
12	.0808	.00515	1.61	.0827	. 0842	.0877	19.76	. 0858	.0883
11 -	.0907	.00650	1.28	.0927	.0942	.0977	24.90	.0957	.0982
10	.102	.00817	1.02	.1039	.1055	. 1089	31.43	.1069	.1094
9	.114	.0102	.814	.1165	.1181	.1225	39.62	.1204	.1254
8	.129	.0131	.634	.1306	.1323	.1366	49.98	.1345	.1395
7	.144	.0163	.510	.1465	.1482	. 1525	63.03	.1503	.1553
6	.162	.0206	.403	.1643	. 1661	.1703	79.44	. 1680	.1730
5	.182	.0260	. 319	.1842	. 1861	.1902	/00.2	.1879	. 1929
4	. 204	.0327	.254				126.3	.2103	. 2153
3	.229	.0412	.202				159.3		
2	.258	.0523	.159				200.9		
O	.325	. 0830	.100						
2/0	.365	. 105	.0791						
4/0	.460	.166	0500						

CURVE-3

	:::;	 		! ## !		1111	11:11	+++	Ela	FI HE	1111	H	HFIF	Hili		FF III	HH.	Hi	HH;			E	T	FLEFF	Hail.	i i i i i	
									Щ		***					17-14 1-1-1-1											
	1		1:::			E.I						AD	Lio	SS€	5 1	N	SAL										
	1:1:	-:::		57) 193						CH 140	F PV-1	ES:		1 E	₽ .T	KA	₩.	VO	ta i	4	† :: <u> </u>				1111		
11 TT	1-1-1-			, , ,				-4	1 -	77~	;;;;; ;;;;;						12.1			12 ³ 127							
1 1 1 1 1		 					1.1		1 1 1	F1		1 : :		1,21	-									137	- 1	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	
	1	= 1 = 1					j-:	1333 1441		111111		:			<u> </u>	1111				-	101	; ;,			.:1: ₁		
1	- + + + + + + + + + + + + + + + + + + +					14.5			1 4 -1		1111 1111				12:T	<u> </u>							1 F.		, , ,		
1-11		141				77.7					11.1			<u> </u>			Tid:	1 - 1 -	- :				-:::				1.23.25
1 1 1 1						- 1 (-1 <u>-</u> 1)		4		1.7		111	1 -							-				11.1		- 1	T
				1111	2	1117	H-1									1,71.		i.ri			[1 . ,	
		7			: . ! . ! .		: 17						1 11									111		; 1 ; ²		-11	
			ļ.,	1.1			· ; [;						:1;	‡ : 1													
				1	,											: : : : : : : : : : : : : : : : : : :						13.17			1		
	2 <i>8</i>				111	1. (1. f.) 1. (1. f.)	: : [1		1.1 1 1. 1.11	1				1 , ;=1				. 17 . 17.1		17, 1 1, 7, 2, 1			.1.	: :: ::::
						1	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	1 1 4								1111	-, -										
	,	1 1		<u> </u>			::-;: :::::::		-						1				11.4	17							: , ¹
											- ; ;				1.		-				1		II.				
=======================================	.				51.						* : · · ·			7.								T		1-17) 11::		1 1
1							-: :	111	17					i.												7.17	
	Щ		17.	1	111											F						1	1		7.2		
	2. <u>2</u>		N	1				1111											-							- 1	1 : : :
Sc								ĒΞ		-							-				. : : 1		1		:		
	2.6	1331		1. 1		=1	1177			T			77				1177					17,	1 1				
	1.8	T : -:		1::-				4			11;											117	7,2				
7.5	1-8		1.1			,	F- 1	171		141											-		Fit				
					1		<u> </u>								-				1			1					
	1.6				1	tutur		L##:			†11: 1::::		Hili			1				-			-				1
	1		1:17			X							1 1 1 1	11.		- ,Σ,							11	1-1			
12.7	1. 4			4.4.4.		X																					1 1 1
			.	بإسقانا						E	-1-						11					1 1 1					
			1 1 1 1	+++-		1 7 5 1						F : 1	7.47 7-4	: <u></u>	-]:; [4::± =1::	117				
							fr		1		1 +		- 173 1		: 1 m	1175					r + 		1		1 m	17 T	
	10	++++		4 : : ++:		10111										utija s Situa		<u> </u>	<u> </u>	++++	17.17.						= =
		L			14				1 :	- E 1			1		+ =	-		FILL		11.5			1	-			
131 T	.8				11111		F: ‡ :			Fil		1 2		14T -		-						ii.i	<u> </u>		11:4		
+)	11 77	1111	114.1			 		•	1	+ ;		Lei i	1-	14 11		1	- 4		1	0					
T.T.										Þ,	4			→ + + +					F F 5	三二	135						
													4	11:12	1111												
EII		Til:		1				Ш			1				H+11		1		1:	1:::							

From E. I. Pollard "Calculation of No-Load Damper Winding Loss in Synchronous Machines", AIEE Vol. 51, 1932, pp 477-81.

IO × 10 to the winch, 5th lines accented

As Cu

X[♠] 10 × 10 TO TH KEUFELL • ESSE

1

Killines per square incn

Kentroganity 3

Homopolar Inductor SALIENT-POLE WOUND-POLE SYMBOLS

Calculation Location	Symbol	Explanation
(78)	A	Ampere conductors per inch of stator periphery
(46)	$\mathbf{a}_{\mathbf{c}}$	Strand area (stator)
(89)	^a cf	Field conductor area
(85)	a _p	Pole area
(20)	В	Density
(128)	$\mathtt{B}_{\mathbf{c}}^{}$	Core density
(125)	$\mathtt{B}_{\mathbf{g}}$	Gap density
(140)	$\mathtt{B}_{\mathbf{p}}$	Pole density no load
(163)	B _{p1}	Pole density full load
(127)	$\mathbf{B_{T}}$	Tooth density
(89)	b _{bo}	Width of slot opening (damper)
(89)	b _{b1}	Width of rectangular slot (damper)
(76)	${f b_h}$	Pole head width
(22)	b _o	Width of slot opening (stator)
(76)	b _p	Pole body width
(22)	b _s	Stator slot dimension per Fig. 1
(15)	$\mathbf{b}_{\mathbf{v}}$	Width of duct
(22)	b ₁ \	
(22)	b ₂ }	Stator slot dimensions per Fig. 1
(22)	b 3	

Calculation Location	Symbol	Explanation
(74)	$\mathbf{c}_{\mathbf{m}}$	Demagnetizing factor
(73)	$^{\mathbf{C}}_{\mathbf{p}}$	Average/maximum field form
(75)	$\mathbf{c}_{\mathbf{q}}$	Cross magnetization factor
(72)	$^{\rm C}_{ m w}$	Winding constant
(71)	c_1	Ratio max. to fund.
(32)	c	Parallel circuits
(12)	D	Stator outside diameter
(11)	d	Stator inside diameter
(35)	$\mathbf{d}_{\mathbf{b}}$	Diameter of bender pin
(11a)	$\mathtt{d}_{\mathbf{r}}$	Rotor outside diameter
(3)	E	Line volts
(145)	$\mathbf{E_{F}}$	Field volts no load
(168)	${f E}_{f FFL}$	Field volts full load
(4)	$\mathbf{E}_{\mathbf{PH}}$	Phase volts
55)	EF top	Eddy factor top
(56)	$\mathbf{EF}_{\mathbf{bot}}$	Eddy factor bottom
(130)	$\mathbf{F_c}$	Stator core ampere turns
(131)	$\mathbf{F}_{\mathbf{g}}$	Air gap ampere turns
(165)	$\mathbf{F_{FL}}$	Total ampere turns full load
(142)	$\mathbf{F_{NL}}$	Total ampere turns no load
(141)	$\mathbf{F}_{\mathbf{p}}$	Pole ampere turns at no load
(164)	$\mathbf{F}_{\mathbf{PL}}$	Pole ampere turns at full load
(136)	Fsc	Short circuit ampere turns

Calculation Location	Symbol	Explanation
(129)	$\mathbf{F_t}$	Stator tooth ampere turns
(147)	F&W	Friction and windage
(5a)	f	Frequency
(69)	$\mathbf{g}_{\mathbf{e}}$	Effective air gap
(59a)	g _{max}	Maximum air gap
(22)	h _o	
(22)	h ₁	
(22)	h ₂	
(22)	h ₃ >	Stator slot dimension
(22)	h _s	
(22)	h _t	
(22)	$\mathbf{h}_{\mathbf{w}}$	
(22)		
(89)	h _{bo}	Height of slot opening
(89)	h _{b1}	Rectangular bar thickness
(24)	$\mathbf{h}_{\mathbf{c}}$	Depth below slot
(76)	h _p	Pole Height
(37)	h st	Uninsulated strand height
(38)	h _{st}	Distance between center line of strand
(8)	$\mathbf{I}_{\mathbf{PH}}$	Phase current
(166)	$^{ m I}_{ m FFL}$	Field amperes at full load

Calculation Location	Symbol	Explanation
(143)	${f I_{FNL}}$	Field amperes at no load
(146)	$^{12}R_{ m F}$	Field loss
(158)	$^{12}\!\mathrm{R_S}$	Stator copper loss
(9a)	Кc	Adjustment factor
(43)	К _d	Distribution factor
(18)	K _i	Stacking factor
(44)	К _р	Pitch factor
(67)	Ks	Carter coefficient
(42)	K_{SK}	Skew factor
(2)	KVA	Machine rating
(151)	K ₁	Pole face loss factor
(19)	k	Watts per 1b.
(48)	$\mathtt{L}_{\mathbf{E}}$	End extension one turn
(113)	$\mathtt{L}_{\mathbf{F}}$	Field self inductance
(13)	L	Gross core length
(93)	\mathcal{L}_{b}	Damper bar length
(136)	$\ell_{\mathbf{e}2}$	Coil extension straight portion
(76)	$\ell_{ m n}$	Pole head length
(76)	$\ell_{ m p}$	Pole body length
(17)	$\mathcal{I}_{\mathbf{s}}$	Solid core length
(49)	ℓ_{t}	1/2 mean turn
(100)	$\ell_{ m tr}$	Mean length of field turns
(5)	m	Number of phases

Calculation Location	Symbol	Explanation
(34)	$^{ m N}_{ m st}$	Strands per conductor
(92)	ⁿ b	Number of damper bars
(45)	n _e	Effective conductors
(99)	$^{ m n}_{ m p}$	Number of field turns
(30)	n _s	Conductor per slot
(14)	$\mathbf{n}_{\mathbf{v}}$	Number of ducts
(9)	P.F.	Power factor
(6)	p	Number of poles
(23)	Q	Number of slots
(53)	R _{ph} (cold)	Stator resistance at 20 °C
(54)	R _{ph} (hot)	Stator resistance at X OC
(107)	R _F (cold)	Field resistance at 20 °C
(108)	R _f (hot)	Field resistance at X ^O C
(137)	SCR	Short circuit ratio
(47)	s	Stator current density
(144)	$\mathbf{s_f}$	Field current density
(133)	Ta	Armature time constant
(134)	$\mathtt{T}_{\mathtt{d}}^{'}$	Transient time constant
(135)	$\mathbf{T_d}^{"}$	Subtransient time constant
(132)	$\mathtt{T}_{ extbf{do}}^{'}$	Open circuit time constant
(149)	$\mathbf{w_c}$	Stator core loss
(172)	$\mathbf{w}_{ extbf{DFL}}$	Damper loss at full load

Calculation Location	Symbol	Explanation
(157)	$\mathbf{w}_{\mathtt{DNL}}$	Damper loss at no load
(171)	$\mathbf{w}_{\mathbf{PFL}}$	Pole face losses at full load
(150)	$\mathbf{w}_{ extbf{pNL}}$	Pole face loss at no load
(170)	$\mathbf{w_{TFL}}$	Stator tooth loss at full load
(148)	$\mathbf{w}_{\mathtt{TNL}}$	Stator tooth loss at no load
(98a)	$\mathbf{v}_{\mathbf{r}}$	Peripheral speed of rotor
(79)	X	Reactance factor
(81)	$\mathbf{x}_{\mathbf{ad}}$	Reactance direct axis
(82)	Xaq	Reactance quadrature axis
(83)	\mathbf{x}_{d}	Synchronous reactance direct axis
(119)	$\mathbf{x}_{\mathbf{d}}^{'}$	Stator transient reactance
(120)	$\mathbf{x_d}^{"}$	Subtransient reactance direct axis
(115)	$\mathbf{x}_{\mathbf{Dd}}$	Leakage reactance direct axis
(117)	\mathbf{x}_{Dq}	Leakage reactance quadrature axis
(118)	$\mathbf{x}_{du}^{'}$	Unsaturated transient reactance
(112)	$\mathbf{x_f}$	Field leakage reactance
(80)	ΧĮ	Leakage
(84)	$\mathbf{x}_{\mathbf{q}}$	Synchronous reactance quadrature axis
(121)	$oldsymbol{\mathrm{x}_{\mathrm{q}}^{\mathrm{r}}}$	Subtransient reactance quadrature axis
(123)	$\mathbf{x}_{\mathbf{o}}$	Zero sequence reactance
(122)	$\mathbf{x_2}$	Negative sequence reactance
(96)	$x_D^{o}C$	Expected damper bar ^O C

Calculation Location	Symbol	Explanation
(103)	$x_F^{o}C$	Expected field temp. in ^O C
(50)	x _S °C	Expected temp. stator in ^O C
(95)	$ ho_{ m D}^{}$	Resistivity of damper bar at 20°C
(51)	$\rho_{ m S}$	Resistivity of stator cond at 20 °C
(104)	$oldsymbol{ ho}_{f F}$	Resistivity of field conductor
(138)	Ø.L	Leakage flux at no load
(160)	Øll	Leakage flux at full load
(126)	ø _p	Flux per pole
(139)	$\phi_{_{\mathbf{PT}}}$	Total flux per pole at no load
(162)	$\phi_{_{ ext{PTL}}}$	Total flux per pole at full load
(124)	$\phi_{_{f T}}$	Total flux
(94)	$ au_{ m b}$	Damper bar pitch
(41)	$\gamma_{ m p}$	Pole pitch
(26)	$\gamma_{\mathbf{s}}$	Slot pitch
(27)	7's 1/3	Slot pitch 1/3 distance from narrowest point
(40)	${m \gamma}_{ m sk}$	Stator slot skew
(70)	$\lambda_{\mathbf{a}}$	Air gap permeance
(63)	λ _E	End permeance
(86)	ጉ _e ℓ	Pole end leakage permeance
(62)	$\lambda_{\mathbf{i}}$	Stator conductor permeance
(88)	≻ sℓ	Pole side leakage permeance
(87)	λtl	Pole tip leakage permeance

 		
(1)		DESIGN NUMBER - To be used for filing purposes
(2)	KVA	GENERATOR KVA
(3)	E	LINE VOLTS
(4)	ЕРН	PHASE VOLTS - For 3 phase, connected generator
		$E_{PH} = \frac{\text{(Line Volts)}}{\sqrt{3}} = \frac{(3)}{\sqrt{3}}$
		For 3 phase, connected generator
		$E_{PH} = (Line Volts) = (3)$
(5)	m	PHASES - Number of
(5a)	f	FREQUENCY - In cycles per second
(6)	P	POLES - Number of
(7)	RPM	SPEED - In revolutions per minute
(8)	I _{PH}	PHASE CURRENT - In amperes at rated load
(9)	P.F.	POWER FACTOR - Given in per unit
(9a)	K _c	ADJUSTMENT FACTOR - When P. F. = 0. to .95 set $K_c = 1$.; when P. F. = .95 to 1. set $K_c = 1.05$
(10)		LOAD POINTS - The computer program is set up to have the 0.%, 100%, 150%, 200% load points as standard outputs. There is an additional space available on the output sheet for one optional load point. This optional

(lla)

(12)

(13)

(14)

(15)

(16)

D

 $n_{\boldsymbol{v}}$

 $\mathbf{b_v}$

Κi

load point will be the designer's choice and can be selected anywhere in the range of 0 to 200% load. When an optional load calculation is required, insert the per unit load value on the input sheet. The optional load point will be calculated in addition to the standard points listed above. For example, insert .33 on the input sheet when the optional load calculation for 33% load is required in addition to the standard points.

If only the standard points are required, insert 0.0 on the input sheet and the optional load column will be blank.

- (11) d STATOR PUNCHING I.D. The inside diameter of the stator punching in inches.
 - d_r ROTOR O.D. The outside diameter of the rotor in inches.
 - PUNCHING O.D. The outside diameter of the stator punching in inches.
 - GROSS STATOR CORE LENGTH In inches.
 - RADIAL DUCTS Number of.
 - RADIAL DUCT WIDTH In inches.
 - STACKING FACTOR This factor allows for the coating (core plating) on the punchings, the burrs due to slotting, and the deviations in flatness. Approximate values of K_i are given in Table IV.

THICKNESS OF LAMINATIONS (INCHES)	GAGE	κ_{i}	
.014	29	0.92	
.018	26	0.93	
. 025	24	0.95	
. 028	2 3	0.97	
. 063		0.98	
. 125		0.99	

TABLE IV

(17) \(\int_{\sigma} \) SOLID CORE LENGTH - The solid length is the gross length times the stacking factor. If ventilating ducts are used, their length must be subtracted from the gross length also.

(18)

$$\ell_s = (K_i) \times (\ell - (n_v) (b_v) = (16) (13) - (14) (15)$$

MATERIAL - This input is used in selecting the proper magnetization curves for stator, yoke, pole, and shaft; when different materials are used. Separate spaces are provided on the input sheet for each section mentioned above. Where curves are available on card decks, use the proper identifying code. Where card decks are not available submit data in the following manner:

The magnetization curve must be available on semilog paper. Typical curves are shown in this manual on Curves 15 and 16. Draw straight line segments through the curve starting with zero density. Record the coordinates of the points where the

straight line segments intersect. Submit these coordinates as input data for the magnetization curve. The maximum density point must be submitted first.

Refer to Figure below for complete sample

WATTS/LB - Core loss per 1b of stator lamination material.

Must be given at the density specified in (20).

<u>DENSITY</u> - This value must correspond to the density used in Item (19) to pick the watts/lb. The density that is usually used is 77.4 kilolines/in².

(19) k

(20) B

(21)	1	TYPE OF STATOR SLOT - Refer to Figure 1, Page
	2	for type of slot.
	3	For (a) slot use 1. as an input
	4	For (b) slot use 2. as an input
	5	For (c) slot use 3. as an input
		For (d) slot use 4. as an input
		Type 5. is not a slot but instead a particular situ-
		ation for an open slot where the winding has only
		one conductor per slot.

- ALL SLOT DIMENSIONS Given in inches per Figure 1, (22)**b**0 Where the dimension does not apply b_1 to the slot being used, insert 0. on input sheet. b_2 b_3 $b_{S} = \frac{b_{1} + b_{3}}{2} = \frac{(22) + (22)}{2}$
- b_s h_0 h_1 h_2 h₃ h_{S} ht $\mathbf{h}_{\mathbf{W}}$
- STATOR SLOTS Number of (23)Q
- DEPTH BELOW SLOTS The depth of the stator core below (24) $h_{\mathbf{c}}$ the slots.

		Due to mechanical strength reasons, h _c should
		never be less than 70% of h_S .
		$h_{c} = \frac{(D) - [(d) + 2(h_{s})]}{2} = \frac{(12) - [(11) + 2(22)]}{2}$
(25)	ď	SLOTS PER POLE PER PHASE
		$q = \frac{(Q)}{(P)(m)} = \frac{(23)}{(6)(5)}$
(26)	T_s	STATOR SLOT PITCH
		$\mathcal{T}_{S} = \frac{\mathcal{T}(d)}{Q} = \frac{\mathcal{T}(11)}{(23)}$
(27)	$ au_{ m sl/3} $	STATOR SLOT PITCH - 1/3 distance up from narrowest sec-
		tion. For slot (a), (b), (c), and (e)
		$T_{\rm S1/3} = \frac{\pi[(d) + .66(h_{\rm S})]}{(Q)} = \frac{\pi[(11) + .66(22)]}{(23)}$
		For slot (d)
		$\frac{\gamma \left[(d) + 2(h_0) + 1.32(b_s) \right]_{=}}{(Q)}$
		$\frac{7 \left[(11) + 2(22) + 1.32(22) \right]}{(23)}$
(28)		TYPE OF WINDING - Record whether the connection is "wye"
		of "delta". For "wye" conn use 1. for input. For
		"delta" use 0. for input.
(29)		TYPE OF COIL - Record whether random wound or formed
		coils are used. For random wound coils use 0.
		for input. For formed coils use 1. for input.
١.]	

1	\	ან
(30)	$n_{\mathbf{S}}$	CONDUCTORS PER SLOT - The actual number of conductors
		per slot. For random wound coils use a space
		factor of 75% to 80%. Where space factor is the
		percent of the total slot area that is available for
		insulated conductors after all other insulation areas
		have been subtracted out.
(31)	Y	THROW - Number of slots spanned. For example, with a
		coil side in slot 1 and the other coil side in slot
		10, the throw is 9.
(3la)		PER UNIT OF POLE PITCH SPANNED - Ratio of the number
		of slots spanned to the number of slots in a pole
		pitch. This value must be between 1.0 and 0.5 to
		satisfy the limits of this program.
		$= \frac{(Y)}{(m) (q)} = \frac{(31)}{(5) (25)}$
(32)	С	PARALLEL PATHS, No. of - Number of parallel circuits
		per phase.
(33)		STRAND DIA. OR WIDTH - In inches. For round wire, use
		strand diameter. For rectangular wire, use strand
		width. This must be the largest of the two dimen-
		sions given for a ractangular wire.
(34)	NST	NUMBER OF STRANDS PER CONDUCTOR IN DEPTH -
		Applies to rectangular wire. In order to have a
		more flexible conductor and reduce eddy current
		loss, a stranded conductor is often used. For
ŧ	1 ,	

1	1	1
		example, when the space available for one conductor
		is .250 width x .250 depth, the actual conductor can
		be made up of 2 or 3 strands in depth as shown
		one strand{ one conductor
		For a more detailed explanation refer to section
		titled "Effective Resistance and Eddy Factor" in
		the Derivations in Appendix.
(3 4 a)	N'ST	NUMBER OF STRANDS PER CONDUCTOR - This number
	Andreas and an analysis of the state of the	applies to the strands in depth and/or width and
		is used in calculating the conductor area. Item
		(34) is different in that it deals with strands in
		depth only and is used in calculating eddy factors.
(35)	db	DIAMETER OF BENDER PIN - in inches - This pin is used
		in forming coils. Use .25 inch for stator O.D. < 8 inches use .50 inches for stator O.D. > 8 inches.
(36)	∫e 2	COIL EXTENSION BEYOND CORE in Inches - Straight por-
		tion of coil that extends beyond stator core.
(37)	hsT	HEIGHT OF UNINSULATED STRAND in Inches - This
		value is the vertical height of the strand and is
		used in eddy factor calculations. Set this value =
		0 for round wire.
(38)	h'sT	DISTANCE BETWEEN CENTERLINES OF STRANDS IN DEPTH
		in inches.
1		

1	1		
	(39)	_	STATOR COIL STRAND THICKNESS in inches - For rec-
			tangular conductors only. For round wire insert
			0. on input sheet. This must be the narrowest
			dimension of the two dimensions given for a
			rectangular wire.
	(40)	$ au_{ ext{sk}}$	SKEW - Stator slot skew in inches at stator I.D.
	(41)	$\gamma_{_{ m P}}$	POLE PITCH in inches.
	,,	_	$\mathcal{T}_{\rho} = \frac{\mathcal{T}(d)}{(P)} = \frac{\mathcal{T}(11)}{(6)}$
a maria di managana da managan	(42)	$\kappa_{ m SK}$	SKEW FACTOR - The skew factor is the ratio of the volt-
			age induced in the coils to the voltage that would
			be induced if there were no skew.
			When $\Upsilon_{SK} = 0$, $K_{SK} = 1$
			$\mathbf{K_{SK}} = \frac{\sin\left[\frac{\pi(\tau_{SK})}{2(\tau_{P})}\right]}{\frac{\pi(\tau_{SK})}{2(\tau_{P})}} = \frac{\sin\left[\frac{\pi(40)}{2(41)}\right]}{\frac{\pi(40)}{2(41)}}$
	(42a)		PHASE BELT ANGLE - Input
			For phase belt angle = 60° insert 60 on input
			sheet.
			For phase belt angle = 120° insert 120 on input sheet.
	(43)	к _d	DISTRIBUTION FACTOR - The distribution factor is the
			ratio of the voltage induced in the coils to the
			voltage that would be induced if the windings
1			

were concentrated in a single slot. See Table 2 for compilation of distribution factors for the various harmonics.

For 60° phase belt angle and q = integer when (42a) = 60 and (25) = integer.

$$K_d = \frac{\sin 30^{\circ}}{(q) \sin [30/(q)]} = \frac{\sin 30^{\circ}}{(25) \sin [30/(25)]}$$

For 60° phase belt angle and (q) #integer = N/B reduced to lowest terms.

When (43a) = 1 and $(25) \neq integer = N/B$ reduced to lowest terms

$$K_d = \frac{\sin 30^{\circ}}{(N) \sin[30/(N)]} = \frac{\sin 30^{\circ}}{(43) \sin[30/(43)]}$$

For 120° phase belt angle and (q) = integer

When (43a) = 120 and (25) = integer

$$K_d = \frac{\sin 60^{O}}{2(q) \sin [30/(q)]} = \frac{\sin 60^{O}}{2(25) \sin [30/(25)]}$$

For 120° phase belt angle and $q \neq integer$ When (43a) = 120 and $(25) \neq integer = N/B$ reduced to lowest terms

$$K_d = \frac{\sin 60^{O}}{2(N) \sin [30/(N)]} = \frac{\sin 60^{O}}{2(43) \sin [30/(43)]}$$

1		
		DITION EACTOR The matic of the voltage induced in the coil to
(44)	К _Р	PITCH FACTOR - The ratio of the voltage induced in the coil to
		the voltage that would be induced in a full pitched
	1	coil. See Table 1 for compilation of the pitch factors
		for the various harmonics.
		$\mathbf{K_{p}} = \sin\left[\frac{(Y)}{(m)(q)} \times 90^{O}\right] = \sin\left[\frac{(31)}{(5)(25)} \times 90^{O}\right]$
(45)		TOTAL EFFECTIVE CONDUCTORS - The actual number of ef-
(45)	ⁿ e	fective series conductors in the stator winding taking
		into account the pitch and skew factors but not allow-
		ing for the distribution factor.
		$n_e = \frac{(Q)(n_S)(K_P)(K_SK)}{(C)} = \frac{(23)(30)(44)(42)}{(32)}$
		CONDUCTOR AREA OF STATOR WINDING in (inches)2 -
(46)	a_{c}	The actual area of the conductor taking into account
		the corner radius on square and rectangular wire.
		See the following table for typical values of corner
		radii
		If (39) = 0 then $a_c = .25\pi(Dia)^2 = .25\pi(33)^2$
		(-0) (0 !!
		If (39) \neq 0 then $a_c = (N'_{ST}) \left[\text{(strand width) (strand)} \right]$
		depth) - $(.858 \text{ r}_{c}^{2})$] = $(34a)$ (33) (39) - $(.858 \text{ r}_{c}^{2})$]
		where .858 r_c^2 is obtained from Table V below.
		(39) (33) . 188 (31) . 75 (33) . 751
		.050 .000124 .000124 .000124
		.072 .000210 .000124 .000124
		. 125 . 000210 . 00084 . 000124 165 . 000840 . 00084 . 003350
		. 165 . 000840 . 00084 . 003350 . 225 . 001890 . 00189 . 003350
		.43800335 .007540
		.68800754 .01340
		03020 .03020
		TABLE V

(47)
$$S_S$$

CURRENT DENSITY - Amperes per square inch of stator conductor

 $S_S = \frac{(I_{PH})}{(C)(a_C)} = \frac{(3)}{(32)(46)}$

(48) L_E

END EXTENSION LENGTH in inches - Can be an input or output.

For L_E to be output, insert 0. on input sheet.

For L_E to be input, calculate per following: When (29) = 0. then:

 $L_E = .5 + \frac{K_T \mathcal{T}(\gamma) \left[(d) + (h_S) \right]}{Q} = .5 + \frac{1 \cdot 3}{1 \cdot 5} \frac{\text{If } (6)}{16} = \frac{2}{4} \frac{2}{4} \mathcal{T}(31) \left[(11) + (22) \right]}$

When (29) = 1. then:

 $L_E = 2 \ell_{e2} + \mathcal{T} \left[\frac{h_1}{2} + \text{dia} \right] + \mathcal{Y} \left[\frac{\mathcal{T}^2}{\sqrt{r_s^2 - b_s^2}} \right]$

= 2 (36) + $\mathcal{T} \left[\frac{(22)}{2} + (35) \right] + (31) \left[\frac{(26)^2}{\sqrt{(26)^2 - (22)^2}} \right]$

(49) ℓ_t

1/2 MEAN TURN - The average length of one conductor in inches.

 $\ell_t = (\mathcal{I}) + (L_E) = (13) + (44)$

(50) ℓ_t

STATOR TEMP C_t - Input temp at which F.L. losses will be calculated. No load losses and cold resistance will be calculated at 20°C.

Ì					
(51)	Ps	RESISTIVITY OF ST	TATOR WINDIN	IG - In micro oh	m-inches @
		20 ⁰ C. I	f tables are ava	ailable using unit	s other than
		that give	n above, use T	able VI for conve	ersion to
		ohm-inc	hes.		
		Р	ohm-cm	ohm-in	ohm-cir mil/ft
		1 ohm-cm =	1.000	0.3937	6.015×10^6
		1 ohm-in =		1.000	1.528×10^{7}
		1 ohm-cir mil/ft =	1.662×10^{-7}	6.545×10^{-8}	1.000
		Conversion	TABLE TABLE TABLE	VI lectrical Resisti	vity
(52)	(hot)	RESISTIVITY OF ST	TATOR WINDIN	NG - Hot at X _S OC	in micro ohm-
		$P_{S(hot)} = (P_S) \left[\frac{(X_S)^0}{(X_S)^0} \right]$	$\begin{array}{c} (5) + 234.5 \\ \hline 254.5 \end{array} = (5)$	$(51) \boxed{\frac{(50) + 234.5}{254.5}}$	
(53)	RSPH	STATOR RESISTAN	ICE/PHASE -	Cold @ 20°C in	ohms
	(cold)	R _{SPH(col}	d) = $\frac{(\mathcal{P}_S)(n_S)(Q)}{(m)(a_C)(C)}$	$\frac{g(\ell_t)}{g(\ell_t)} \times 10^{-6} =$	(51)(30)(23)(49) (5)(46)(32) ²
(54)	RSPH (hot)	STATOR RESISTAN	ICE/PHASE - C	Calculated @ X ^O O	C in ohms
	·	R _{SPH} (hot	$= \frac{(P_{\rm S hot})(n_{\rm S})}{(m)(a_{\rm c})(n_{\rm S})}$	$\frac{(Q)(\ell_t)}{(C)^2}$ x 10	6 (52)(30)(23)(49 (5)(46)(32) ²
(55)	EF (top)	EDDY FACTOR TO	-	factor of the to	
		perature	of the machine	e. For round w	vire
		EF _{top} =	1		

EF _{top} = 1 + $\left\{ .584 + \frac{N_{st}^2 - 1}{16} \right] \left[\frac{h_{st} \ell}{h_{st} \ell} \right]^2 \right\} 3.35 \times 10^{-3}$
$= 1 + \left\{ .584 + \frac{\left[(34)^2 - 1}{16} \right] \underbrace{\left[(38)(13) \atop (37)(49)}_{2}^{2} \right]}_{2} 3.35 \times 10^{-3}$ $\underbrace{\left[(37)(30)(5a)(46) \atop (22)(52) \right]}_{2}$

(56) EF (bot)

EDDY FACTOR BOTTOM - The edgy factor of the bottom coil at the expected operating temperature of the machine. For round wire EF_(bot) = 1

$$EF(bot) = (EF(top)) - 1.677 \left[\frac{(h_{st})(n_s)(f)(a_c)}{(b_s)(P_{shot})} \right]^2 \times 10^{-3}$$

= (55) - 1.677
$$\frac{(37)(30)(5a)(46)}{(22)(52)}$$
 10⁻³

(57) b_{tm}

For slots type (a), (b), (d) and (e), Figure I

$$b_{tm} = \frac{\pi(d) + (h_s)}{(Q)} - (b_s) = \frac{\pi(11) + (22)}{(23)} - (22)$$

(57a)	^b t 1/3	STATOR TOOTH WIDTH 1/3 distance up from narrowest section For slots type (a), (b) and (e)
		$b_{t 1/3} = (\gamma_{s 1/3}) - (b_{s}) = (27) - (22)$
		For slot type (c)
		$b_{t 1/3} = b_{tm} = (57)$
		For slot type (d)
		$b_{t 1/3} = (\gamma_{1/3}) - \frac{2\sqrt{2}}{3} (b_s) = (27)94 (22)$
(58)	b _t	TOOTH WIDTH AT STATOR I.D. in inches -
	-	For partially closed slot
		$b_t = \frac{\pi(d)}{(Q)} - b_0 = \frac{\pi(11)}{(23)} - (22)$
		For open slot
		$b_t = \frac{\pi(d)}{(Q)} - b_s = \frac{\pi(11)}{(23)} - (22)$

j			
	(59)	g _{min}	MINIMUM AIR GAP in inches - For concentric pole face $g_{\min} = g_{\max}.$ For non concentric pole face $g_{\min} = g_{\max} = g_{\max}.$ The pole face of the pole.
	(59a)	g _{max}	MAXIMUM AIR GAP in inches
	(60)	C _X	REDUCTION FACTOR - Used in calculating conductor permeance and is dependent on the pitch and distribution factor. This factor can be obtained from Graph 1 with an assumed K_d of .955 or calculated as shown $C_X = \frac{(K_X)}{(K_P)^2 (K_d)^2} = \frac{(61)}{(44)^2 (43)^2}$
	(61)	K _X	FACTOR TO ACCOUNT FOR DIFFERENCE in phase current in coil sides in same slot $K_{\mathbf{X}} = \frac{1}{4} \begin{bmatrix} 3(\gamma) \\ (m)(q) + 1 \end{bmatrix} \text{ For 3 phase}$ $= \frac{1}{4} \begin{bmatrix} 3(31) \\ (5)(25) + 1 \end{bmatrix}$ $K_{\mathbf{X}} = \frac{(\gamma)}{(m)(q)} \text{ For 2 phase}$
	(62)	$ ho_{f i}$	= \frac{(31)}{(5)(25)} NOTE: See special case for (e) slot. Refer to calculation (62) CONDUCTOR PERMEANCE - The specific permeance for the portion of the stator current that is embedded in the iron. This permeance depends upon the configuration of the slot.

(a) For open slots

$$\chi_{i} = (C_{X}) \frac{20}{(m)(q)} \left[\frac{(h_{2})}{(b_{S})^{+}} \frac{(h_{1})}{3(b_{S})} + \frac{(b_{t})^{2}}{16(\tau_{S})(g)} + \frac{.35(b_{t})}{(\tau_{S})} \right]$$

$$\lambda_{i} = (60) \frac{20}{(5)(25)} \left[\frac{(22)}{(22)} + \frac{(22)}{3(22)} + \frac{(58)^{2}}{16(26)(59)} + \frac{.35(58)}{(26)} \right]$$

(b) For partially closed slots with constant slot width

$$\gamma_{i} = (C_{X}) \frac{20}{(m)(q)} \left[\frac{(h_{o})}{(b_{o})} + \frac{2(h_{t})}{(b_{o}) + (b_{s})} + \frac{(h_{w})}{(b_{s})} + \frac{(h_{1})}{3(b_{s})} + \frac{(b_{t})^{2}}{16(\tau_{s})(g)} + \frac{.35(b_{t})}{(\tau_{s})} \right]$$

$$\lambda_{i} = (60) \frac{20}{(5)(25)} \sqrt{\frac{(22)}{(22)} + \frac{2(22)}{(22) + (22)} + \frac{(22)}{(22)} + \frac{(22)}{3(22)} + \frac{(58)^{2}}{16(26)(59)} + \frac{.35(58)}{(26)}}$$

(d) For round slots

$$\lambda_{i} = (C_{X}) \frac{20}{(m)(q)} \left[.62 + \frac{(h_{0})}{(b_{0})} \right]$$

$$\lambda_{i} = (60) \frac{20}{(5)(25)} \left[.62 + \frac{(22)}{(22)} \right]$$

(e) For open slots with a winding of one conductor per slot

$$\left((C_{\mathbf{X}}) = \frac{1}{\left(\kappa_{\mathbf{p}}^{2} \right) \left(\kappa_{\mathbf{d}}^{2} \right)} \right)$$

$$(K_X) = 1$$

(63)	K _E	LEAKAGE REACTIVE FACTOR for end turn
		$K_E = \frac{\text{Calculated value } (L_E)}{\text{Value } (L_E) \text{ from Graph 1}}$ (For machines where (11)>8"
		where L_{E} = (48) and abscisa of Graph 1 = (γ)(γ) = (31)(26)
		$K_E = \sqrt{\frac{\text{Calculated value of } (L_E)}{\text{Value } (L_E) \text{ from Graph 1}}}$ (For machines where (11)<8"
(64)	入 _E	END WINDING PERMEANCE - The specific permeance for the
		end extension portion of the stator winding
		$\sum_{E} = \frac{6.28 (K_{E})}{(\ell)(K_{d})^{2}} \left[\frac{\emptyset_{E} L_{E}}{2n} \right] = \frac{6.28 (63)}{(13)(43)^{2}} \left[\frac{Q_{E} L_{E}}{2n} \right]$
		The term $\left[\begin{array}{c} \phi_{\rm E} {\rm L}_{\rm E} \\ \hline 2{\rm n} \end{array}\right]$ is obtained from Graph 1.
		The symbols used in this (term) do not apply to those
; :		of this design manual. Reference information for the
		_
		symbol origin is included on Graph 1.
(65)		WEIGHT OF COPPER - The weight of stator copper in lbs.
		#'s copper = $.321(n_s)(Q)(a_c)(\ell_t) = .321(30)(23)(46)(49)$
(66)		WEIGHT OF STATOR IRON - in lbs.
		#'s iron = $_{o}56\ell\{(b_{tm})(Q)(\ell_{s})(h_{s}) + \pi(D) - (h_{c})(h_{c})(\ell_{s})\}$
		$_{,}566\{(57)(23)(17)(22) + \pi[(12) - (24)](24)(17)\}$
(67)	K _s	CARTER COEFFICIENT
		$K_{s} = \frac{(\gamma_{s}) \left[5(g) + (b_{s}) \right]}{(\gamma_{s}) \left[5(g) + (b_{s}) \right] - (b_{s})^{2}} $ (For open slots)

$$K_{S} = \frac{(26)[5(59) + (22)]}{(26)[5(59) + (22)] - (22)^{2}}$$

$$K_{S} = \frac{\gamma_{S} \left[4.44(g) + .75(b_{o})\right]}{\gamma_{S} \left[4.44(g) + .75(b_{o})\right] - (b_{o})^{2}}$$
 (For partially closed slots)

$$K_{S} = \frac{(26) [4.44(59) + .75(22)]}{(26) [4.44(59) + .75(22)] - (22)^{2}}$$

(68) -- AIR GAP AREA - The area of the gap surface at the stator bore

Gap Area =
$$\pi(d)(\mathcal{L}) = \pi(11)(13)$$

(71)

$$g_e = (K_s)(g) = (67)(59)$$

(70) \(\lambda_a \) AIR GAP PERMEANCE - The specific permeance of the air gap

$$\lambda_{a} = \frac{6.38(d)}{(P)(g_{e})} = \frac{6.38(11)}{(6)(69)}$$

THE RATIO OF MAXIMUM FUNDAMENTAL of the field form to the actual maximum of the field form - This term can be an input or output. For C_1 to be output insert 0. on input sheet. For C_1 to be input, determine C_1 as follows:

For pole heads with only one radius, C_1 is obtained from curve #4. The abscisa is "pole embrace" (∞) = (77). The graphical flux plotting method of determining C_1 is explained in the section titled "Derivations" in the Appendix.

(72)	c _w	WINDING CONSTANT - The ratio of the RMS line voltage for a full pitched winding to that which would be introduced in all the conductors in series if the density were uniform and equal to the maximum value. This value can be an input or output. For C_W to be an output, insert 0. on input sheet. For C_W to be an input, calculate as follows: $C_W = \frac{(E)(C_1)(K_d)}{\sqrt{2} \ (E_{PH})(m)} = \frac{(3)(71)(43)}{\sqrt{2} \ (4)(5)}$
		Assuming $K_d = .955$, then $C_W = .225 C_1$ for three phase delta machines and $C_W = .390 C_1$ for three phase star machines.
(73)	Cp	POLE CONSTANT - The ratio of the average to the maximum value of the field form. This ratio can be an input or output. For C_p to be an output, insert 0. on input sheet. For C_p to be an input, determine as follows: For pole heads with more than one radius C_p is calculated from the same field form that was used to determine C_1 , and this method is described in the section titled "Derivations" in the Appendix. For pole heads with only one radius C_p is obtained from curve #4. Note the correction factor at the top of the curve.
(74)	C _M	<u>DEMAGNETIZING FACTOR</u> - direct axis - This factor can be an input or output. For C_{M} to be an output, insert 0. on input sheet. For C_{M} to be an input, determine as follows:

1		49
		$C_{\mathbf{M}} = \frac{(\mathbf{x})\pi + \sin[(\mathbf{x})\pi]}{4\sin[(\mathbf{x})\pi]} = \frac{(77)\pi + \sin[(77)\pi]}{4\sin[(77)\pi]}$ $C_{\mathbf{M}} \text{ can also be obtained from curve 9.}$
(75)	Cq	CROSS MAGNETIZING FACTOR - quadrature axis - This factor can be an input or output. For C_q to be an output, insert 0. on input sheet. For C_q to be an input, determine as follows:
		$C_{q} = \frac{1/2 \cos \left[(\alpha) \pi/2 \right] + (\alpha) \pi - \sin \left[(\alpha) \pi \right]}{4 \sin \left[(\alpha) \pi/2 \right]}$ $= \frac{1/2 \cos \left[(77) \pi/2 \right] + (77) \pi - \sin \left[(77) \pi \right]}{4 \sin \left[(77) \pi/2 \right]}$ $C_{q} \text{ can also be obtained from curve 9.}$
(76)		POLE DIMENSIONS LOCATIONS per Figure 2

Where:

length of pole (one end only)

width of pole

 $\mathbf{h}_{\mathbf{p}}$ height of pole at center

all dimensions in inches

(77) $\mathbf{\alpha}$

POLE EMBRACE

$$\infty = \frac{b_{P}}{\tau_{p}} = \frac{(76)}{(41)}$$

(TO)		
(78)	A	AMPERE CONDUCTORS per inch - The effective ampere con-
		ductors per inch of stator periphery. This factor
		indicates the "specific loading" of the machine. Its
		value will increase with the rating and size of the
		machine and also will increase with the number of
		poles. It will decrease with increases in voltage or
		frequency. A is generally higher in single phase
		machines than in polyphase ones.
		$A = \frac{(I_{PH})(n_s)(K_P)}{(C)(\gamma_s)} = \frac{(8)(30)(44)}{(32)(26)}$
(79)	x	REACTANCE FACTOR - The reactance factor is the quantity by
		which the specific permeance must be multiplied to
		give percent reactance. It is the percent reactance
		for unit specific permeance, or the percent of normal
		voltage induced by a fundamental flux per pole per
		inch numerically equal to the fundamental armature
		ampere turns at rated current. Specific permeance
		is defined as the average flux per pole per inch of
i		core length produced by unit ampere turns per pole.
		100(A)(K _d) 100 (78)(43)
		$X = \frac{100(A)(K_d)}{\sqrt{2} (C_1)(B_g) \times 10^3} = \frac{100 (78)(43)}{\sqrt{2} (71)(125) \times 10^3}$
		1, , , g, , , , , , , , , , , , , , , ,
(80)	$\mathbf{x}_{\boldsymbol{\ell}}$	LFAKAGE REACTANCE - The leakage reactance of the stator5
		for steady state conditions. When (5) = 3, calculate
		as follows:
		_
		$\mathbf{X}_{\ell} = 2\mathbf{X} \left[(\lambda_{i}) + (\lambda_{E}) \right] = 2(79) \left[(62) + (64) \right]$
		In the case of two phase machines a component due
		to belt leakage must be included in the stator leakage.
		reactance. This component is due to the harmonics
1	1	The state of the s

caused by the concentration of the MMF into a small number of phase belts per pole and is negligible for three phase machines. When (5) = 2, calculate as follows:

$$\lambda_{\rm B} = \frac{0.1(\rm d)}{(\rm P)(g_{\rm e})} \left[\frac{\sin \left[\frac{3(\rm y)}{(\rm m)(\rm q)}\right]90^{\rm o}}{(\rm K_{\rm p})} \right] = \frac{0.1(11)}{(\rm 6)(69)} \left[\frac{\sin \left[\frac{3(31)}{(5)(25)}\right]90^{\rm o}}{(44)} \right]$$

 $X_{\ell} = X_{E}(\lambda_{i}) + (\lambda_{E}) + (\lambda_{E}) + (\lambda_{E})$ where $\lambda_{E} = 0$ for 3 phase machines.

$$X_{\ell} = (79) [(62) + (64) + (80)]$$

X_{aq}

 $\mathbf{x}_{\mathbf{q}}$

(82)

(84)

(85)

(81) X_{ad} REACTANCE - direct axis - This is the fictitious reactance due to armature reaction in the direct axis.

$$X_{ad} = (X)(\lambda_a)(C_1)(C_M) = (79)(70)(71)(74)$$

REACTANCE - quadrature axis - This is the fictitious reactance due to armature reaction in the direct axis.

$$X_{aq} = (X)(C_q)(\lambda_a) = (79)(75)(70)$$

(83) X_d SYNCHRONOUS REACTANCE - direct axis - The steady state short circuit reactance in the direct axis.

$$X_d = (X_\ell) + (X_{ad}) = (80) + (81)$$

SYNCHRONOUS REACTANCE - quadrature axis - The steady state short circuit reactance in the quadrature axis.

$$X_q = (X_\ell) + (X_{aq}) = (80) + (82)$$

POLE AREA - The effective cross sectional area of the pole. $a_{p} = (b_{p})(\ell_{p})(K_{i}) = (76)(76)(16)$

1	(98a)	$\mathbf{v_r}$	PERIPHERAL SPEED - The velocity of the rotor surface
			in fee t per minute
			$V_r = \frac{(d_r)(RPM)}{12} = \frac{(11a)(7)}{12}$
	(99)	Νp	NUMBER OF FIELD TURNS
	(100)	tr	MEAN LENGTH OF FIELD TURN
	(101)		FIELD CONDUCTOR DIMENSIONS
	(103)	x _f oc	FIELD TEMP IN OC - Input temp at which full load field
			loss is to be calculated.
	(104)	$\mathcal{P}_{_{\mathbf{f}}}$	RESISTIVITY of field conductor at 20°C in micro ohm-
			inches. Refer to table given in Item (51) for
			conversion factors.
	(105)	P _f	RESISTIVITY of field conductor at X _f ^O C
		(not)	$\mathcal{P}_{f \text{ (hot)}} = \mathcal{P}_{f} \left[\frac{(X_{f}^{O}D) 234.5}{254.5} \right] = (104) \left[\frac{(103) 234.5}{254.5} \right]$
	(106)	a _{cf}	RESISTIVITY of field conductor at X_f^{OC} $ \mathcal{P}_f \text{ (hot)} = \mathcal{F}_f \left[\frac{(X_f^{OD}) 234.5}{254.5} \right] = (104) \left[\frac{(103) 234.5}{254.5} \right] $ CONDUCTOR AREA OF FIELD WDG - Calculate same as stator conductor area (46) except substitute
			stator conductor area (46) except substitute
1			(102) for (39)
			(101) for (33)

$$R_{f \text{ (cold)}} = \mathcal{F}_{f} \frac{(N_{f}) (l_{tf})}{(a_{cf})} = (104) \frac{(99) (100)}{(106)}$$

(108)
$$R_f$$
 HOT FIELD RESISTANCE - Calculated at X_f^{OC} (103)

$$R_{f \text{ (hot)}} = \int_{f \text{ hot)}}^{\infty} \frac{(N_{f}) (N_{f})}{(a_{cf})} = (105) \frac{(99)(100)}{(106)}$$

(108a) -- WEIGHT OF FIELD COPPER in lbs
#'s of copper = .321 (N_f)
$$(t_f)(a_{cf})$$

$$= .321(99) (100)(106)$$

(108b) -- WEIGHT OF ROTOR IRON - Because of the large number of different pole shapes, one standard formula cannot be used for calculating rotor iron weight. Therefore, the computer will not calculate rotor iron weight.

$$L_{f} = (N_{f})^{2} \left[C_{p} \lambda_{a} \frac{i}{2} \ell_{p} + P_{f} \right] \times 10^{-8}$$

$$X'_{du} = (X_f) + (X_f) = (80) + (112)$$

 $\mathbf{x}_{\mathbf{d}}^{'}$

SATURATED TRANSIENT REACTANCE

 $X_d' = .88(X_{du}') = .88(118)$

 x_d''

SUBTRANSIENT REACTANCE in direct axis

When no damper bars exist, i.e. when (92) = 0

 $X''_d = (X'_d) = (119)$

 $\mathbf{x}_{\mathbf{q}}^{"}$

SUBTRANSIENT REACTANCE in quadrature axis

When no damper bars exist, i.e. when (92) = 0

 $X_{q}'' = X_{q} = (84)$

 $\mathbf{X_2}$

NEGATIVE SEQUENCE REACTANCE - The reactance due to the field which rotates at synchronous speed in a direction opposite to that of the rotor.

 $x_2 = .5 [x_d'' + x_q''] = .5 [(120) + (121)]$

 $\mathbf{x_0}$

ZERO SEQUENCE REACTANCE - The reactance drop across any one phase (star connected) for unit current in each of the phases. The machine must be star connected for otherwise no zero sequence current can flow and the term then has no significance.

•	•	
(132)	T'do	OPEN CIRCUIT TIME CONSTANT - The time constant of the field winding with the stator open circuited and with negligible external resistance and inductance in the field circuit. Field resistance at room temperature $ (20^{\circ}C) \text{ is used in this calculation.} $ $ T'_{do} = \frac{L_F}{R_F} = \frac{(113)}{(107)} $
(133)	Ta	ARMATURE TIME CONSTANT - Time constant of the D.C. component. In this calculation stator resistance at room temperature (20°C) is used. $T_a = \frac{X_2}{200\pi(f)(r_a)} = \frac{(122)}{200\pi(5a)(133)}$
(134)	т' _d	where $r_a = \frac{(m)(I_{PH})^2(R_{SPH cold})}{Rated KVA} = \frac{(5)(8)^2(53)}{(2)}$ TRANSIENT TIME CONSTANT - The time constant of the transient reactance component of the alternating
(135)	T'd	wave. $T_{d}' = \frac{(X_{d}')}{(X_{d}')} (T_{do}') = \frac{(119)}{(83)} (132)$ <u>SUBTRANSIENT TIME CONSTANT</u> - The time constant of the subtransient component of the alternating wave. This value has been determined empirically from tests on large machines. Use following values.
(136)	F _{SC}	$T_d'' = .035$ second at 60 cycle $T_d'' = .005$ second at 400 cycle SHORT CIRCUIT AMPERE TURNS - The field ampere turns required to circulate rated stator current when the stator is short circuited. $F_{SC} = (X_d)(F_g) = (83)(131)$

Ø_T TOTAL FLUX IN KILO LINE

B_g GAP DENSITY in Kilo Lines/in² - The maximum flux density in the air gap

$$B_g = \frac{(\emptyset_T)}{\pi(d)(\ell)} = \frac{(124)}{\pi(11)(13)}$$

 $\emptyset_{\mathbf{P}}$ FLUX PER POLE in Kilo Lines

B_t TOOTH DENSITY in Kilo Lines/in² - The flux density in the stator tooth at 1/3 of the distance from the minimum section.

$$B_t = \frac{\emptyset_T}{(Q)(\mathcal{L}_s)(b_{t 1/3})} = \frac{(124)}{(23)(17)(57a)}$$

B_c CORE DENSITY in Kilo Lines/in² - The flux density in the stator core

$$B_{c} = \frac{(\emptyset_{p})}{A_{c}}$$

A_C EFFECTIVE AREA OF THE CORE

$$A_{c} = \frac{(D-2 \text{ dbs}) \pi a l_{s}}{p}$$

Fg AIR GAP AMPERE TURNS - The field ampere turns per pole required to force flux across the air gap when operating at no load with rated voltage.

$$F_g = \frac{(B_g)(g_e)}{3.19} = \frac{(125)(69)}{3.19}$$

P_m = Leakage permeance path from rotor to stator between pole lobes, or rotor teeth.

FLUX LEVEL BETWEEN LOBES AT N.L. IS ge (Bg) g+hp P₄ The permeance of the leakage path from the inner (or inboard) edge of the stator stack, to the center shaft portion of the rotor.

CoiL STATOR ROTOR

P₅ = Leakage permeance across the field coil.

P₆ = Leakage permeance from stator to stator.

$$\mathcal{O}_{6} = \frac{3.19 \left[\frac{10_{\text{cort}}}{2} - d\right] \left[\frac{10_{\text{cort}}}{2} + d\right] \pi}{b_{\text{cort}}}$$

P7

P7 = Leakage permeance from stators to shaft and rotor.

$$\mathcal{C}_{f} = \pi \frac{\left[\frac{J+d_{SHAFI}}{2}\right]\left[\frac{D-d}{2}\right]\frac{3.19}{2}}{\frac{d}{2}\left[D-d_{SHAFI}\right]}$$

m = Flux leaking across the rotor area where there is no pole, no load

 p_m' = Approximation of p_m'

 $\phi_{ML} = \phi_{m}$ leaking under load conditions

Flux leaking from the inboard side of a stator stack to the rotor (shaft center section) at no load

 \emptyset_4' = Approximation of \emptyset_4

 $\emptyset_{4L} = \emptyset_4$ leaking under load conditions

 \emptyset_5' = Approximation of \emptyset_5

 $\phi_{5L} = \phi_{5}$ leaking under load conditions

Flux leaking between stators, below the field coil and at no load

 ϕ_6' = Approximation of ϕ_6

 ϕ_{RT} = ϕ_{R} leaking under load conditions

 φ_7 = Flux leaking from stator into rotor end shaft extension.

 ϕ_7' = Approximation of ϕ_7

 $\phi_{7L} = \phi_{7}$ leaking under load conditions

 ϕ_{SH} = Flux in shaft at no load

 ϕ_{SH}' = Approximation of ϕ_{SH}

 $\phi_{\rm SHL} = \phi_{\rm SH}$ under load

 ϕ_{v} = Flux in the yoke outside the stator stack

pyc = Flux in the yoke around the field coil when the housing is jogged out to accommodate the field coil.

 ϕ_{y} = ϕ_{yc} in a straight housing.

CALCULATING THE PERFORMANCE OF THE HOMOPOLAR INDUCTOR

The procedure recommended for hand calculations is as follows:

1.0 Calculate \emptyset_T , B_T , \emptyset_P and make all of the stator calculations listed on the left hand side of the stator design sheet, page 2.

Use C₁ and C_p values obtained from curve 4, page 11.

- 1.1 Calculate P_m, P₄, P₅, P₆, P₇.
- 2.0 No-load Calculations
- 2.1 Calculate $AT_g = \frac{Bg \ ge}{3.19}$
- 2.2 Calculate $\phi_m = P_m AT_g$
- 2.3 Calculate $AT_g + AT_m = AT_g + \frac{PØ_m \text{ ge}}{3.19 \text{ Ag}}$
- 2.4 Calculate $\phi_4 = P_4 \left[AT_g AT_m \right]$ $O_5 = P_5 \left[2AT_g 2AT_m \right]$ $\phi_6 = P_6 \left[2AT_g 2AT_m \right]$ $\phi_7 = P_7 \left[AT_g AT_m \right]$

$$B_{TNL} = \frac{\emptyset_T + \emptyset_m P}{A_T}$$

$$B_c = \frac{\phi_p + \phi_m}{A_{core}}$$

2.7
$$\emptyset_{\text{shaft}} = \frac{P}{2} \emptyset_{P} + P \emptyset_{m} + \emptyset_{4} + \emptyset_{7}$$

2.8
$$B_{\text{shaft}} = \frac{\phi_{\text{SH}}}{A_{\text{SH}}}$$

2.9
$$\phi_{y} = \phi_{SH} + \phi_{6} + \phi_{5}$$

$$2.10 B_y = \frac{\emptyset_y}{A_y}$$

2.11
$$F_y = \ell_y \left[\frac{NI}{in} \text{ at } B_y \right]$$

2.12 The total ampere turns drop in the flux circuit is =

$$F_{TNL} = 2 \left[F_g + F_{Qm} + F_T + F_C + F_P \right] + F_{SH} + F_y$$

3.1 Calculate
$$e_d = \cos d + x_d \sin \Psi$$

3.2 Calculate
$$F_{TL}' = F_T (1 + \cos \emptyset)$$

$$F_{dm} = \frac{.45 N_e I_{ph} C_m K_d}{P}$$

3.4
$$\phi'_{mL} = P_m \left[F_{dm} + F_g e_d \right]$$

3.5
$$F'_{gL} = F_g e_d + \frac{P \not Q_m ge}{3.19 Ag}$$

3.6
$$\phi_{PL}' = \phi_{P} \left[e_{d} - .93 \times ad \sin \Psi \right]$$

$$B_{PL} = \frac{\emptyset_{PL}' + \emptyset_{m}}{A_{pole}}$$

3.8
$$F_{PL} = h_p \left[NT \text{ at } B_{PL} \right]$$

3.9
$$\phi'_{4L} = P_4 \left[F'_{gL} + F'_{TL} + F'_{PL} \right]$$

3.10
$$g_{0L}^{-} P_{5} \left[2 F_{gL}^{'} + 2 F_{TL}^{'} + 2 F_{PL}^{'} \right]$$

3.11
$$\phi_{6L} = P_6 \left[2 F_{gL} + 2 F_{TL} + 2 F_{PL} \right]$$

3.12
$$\phi_{7L} = P_7 \left[F_{gL} + F_{TL} + F_{PL} \right]$$

3.13
$$Q_{BHL} - Q_{PL} \frac{P}{R} + P Q_{m} + Q_{4L} + Q_{7L}$$

$$B_{SHL} = \frac{Ø'_{SHL}}{A_{SH}}$$

3.16
$$Q_{mL} = P_{m} \left[F_{dm} + F'_{gL} \right]$$

$$\phi_{\rm PL} = \phi_{\rm PL}' + \phi_{\rm mL}$$

$$B_{PL} = \frac{\phi_{PL}}{A_p}$$

3.19
$$F_{PL} = h_p \left[NI \text{ at } B_{PL} \right]$$

3.20
$$F_{gL} - F_{g} e_{d} + \frac{P \emptyset_{m} \text{ ge}}{Ag 3.19}$$

3.21
$$B_{TL} = B_{T} + \frac{4 Q_{mL}}{A_{T}}$$

3.22
$$F_{TL} = h_T \left[NI \text{ at } B_{TL} \right] \left(1 + \cos \theta\right)$$

3.23
$$\phi_{7L} = P_7 \left[F_{TL} + F_{gL} + F_{PL} \right]$$

3.24
$$\emptyset_{4L} = P_4 \left[F_{TL} + F_{gL} + F_{PL} \right]$$

3.25
$$\phi_{\text{shaft L}} = \frac{\phi_{\text{PL}}(P)}{2} - \frac{P}{2} \phi_{\text{mL}} - \phi_{\text{7L}} - \phi_{\text{4L}}$$

$$B_{SHL} = \frac{o_{SHL}}{A_{SH}}$$

3.27
$$F_{SHL} = \ell_{SH} \left[\text{NI at } B_{SHL} \right]$$

3.28
$$\phi_{5L} = P_5 \left[2F_{TL} + 2F_{gL} + 2F_{FL} + F_{SHL} \right]$$

3.29
$$\phi_{6L} = P_6 \left[2F_{TL} + 2F_{gL} + 2F_{PL} + F_{SHL} \right]$$

3.30
$$\phi_{\text{core L}} = \phi_{\text{PL}} + \frac{\phi_{5\text{L}} + \phi_{6\text{L}}}{P}$$

 \emptyset_4 and \emptyset_7 are leakage fluxes between pole positions and do not add to the flux density in the core.

3.31
$$B_{\text{core L}} = \frac{\emptyset_{\text{cL}}}{A_{\text{cL}}}$$

3.32
$$F_{cL} = dbs \left[NI/in \text{ at } B_{cL} \right]$$

3.33
$$\varphi_{yL} = \varphi_{SHL} + \varphi_{6L} + \varphi_{5L}$$

$$B_{yL} = \frac{Q_{yL}}{A_y}$$

3.35
$$F_{yL} = \ell_y \left[NI/in \text{ at } B_{yL} \right]$$

3.36
$$F_{\text{total}} = 2F_{\text{gL}} + 2F_{\text{TL}} + 2F_{\text{cL}} + 2F_{\text{pL}} + F_{\text{SHL}} + F_{\text{yL}}$$

YOKE FLUX AND LENGTH

There are three common types of housing or yoke construction and each must be calculated differently.

1. The first type of housing is straight and of uniform thickness

The coil is located between the stator stacks and is between the output winding and the housing or yoke.

$$l_y = b_{coil} + 2/3 l$$

assuming that the effective length of the yoke, for the flux density calculated is 1/3 of the stack length.

2. In the second type of housing design, the excitation coil is so located that the housing or yoke must be jogged out to accommodate it.

The flux in the housing or yoke, that is directly outside the stator stack is: $(x) = \frac{2}{3}$

 $\phi_{y2L} = \phi_{yL} - \phi_{5L}$ since we have calculated a flux value for case 1, the straight, uniform thickness housing.

3. In the third configuration, the housing is tapered over the stator and the yoke density is approximately uniform over most of the stator stack length. The yoke length in this case can be taken as 3/4 \angle over each stack or

Ly=3/2 l & lyct = lyc + 2tyc + dye - D]

AS IN CASE Z.

STATOR

STATOR

The flux in the yoke directly outside the stack is

$$q_{y3L} = q_{yL} - q_{5L}$$

(143)	I_{FNL}	FIELD CURRENT - at no load
		$I_{FNL} = (F_{NL})/(N_F) = (142)/(99)$
(144)	$\mathbf{s_F}$	CURRENT DENSITY - at no load. Amperes per
		square inch of field conductor.
		$S_{F} = (I_{FNL})/(a_{cf}) = (143)/(106)$
(145)	$\mathbf{E_F}$	FIELD VOLTS - at no load. This calculation is made
		with cold field resistance at 20°C for no
		load condition.
		$E_{F} = (I_{FNL})(R_{f cold}) = (143)(107)$
(146)	I ² R	ROTOR I ² R - at no load. The copper loss in the field
	1	winding is calculated with cold field resistance
		at 20°C for no load condition.
		$I^{2}R = (I_{FNL})^{2} (R_{f cold}) = (143)^{2} (107)$

(147)	F&W	FRICTION & WINDAGE LOSS - The best values are
		obtained by using existing data. For ratio-
		ing purposes, the loss can be assumed to
		vary approximately as the $5/2$ power of the
<u>}</u>		rotor diameter and as the 3/2 power of the
	i :	RPM. When no existing data is available,
		the following calculation can be used for an
		approximate answer. Insert 0. when com-
		puter is to calculate F&W. Insert actual
		F&W when available. Use same value for
		all load conditions.
		F&W = 2.52 x $10^{-6} (d_r)^{2.5} 2 \mathcal{L}_n (RPM)^{1.5}$
		$= 2.52 \times 10^{-6} (11a)^{2.5} 2(76) (7)^{1.5}$
(148)	W _{TNL}	STATOR TEETH LOSS - at no load. The no load loss
ļ	'	(WTNL) consists of eddy current and hysteresis
		losses in the iron. For a given frequency
		the no load tooth loss will vary as the square
		of the flux density. The losses in the two
		stators are approximately the same as if
		all the voltage were generated in a single
		stator.

	1	1	1
			$W_{TNL} = .453(b_{t 1/3})(Q)(\ell_s)(h_s)(K_Q)$
			= .453(57a)(23)(17)(22)(148)
			Where $K_Q = (k) \left[\frac{(B_t)}{(B)} \right]^2 = (19) \left[\frac{(127)}{(20)} \right]^2$
	(149)	w _c	STATOR CORE LOSS - The stator core losses are due to eddy
			currents and hysteresis and do not change under load
			conditions. For a given frequency the core loss will
			vary as the square of the flux density (B_c) .
			$W_c = 1.42 [(D) - (h_c)] (h_c) (/)_s (K_Q)$
			- 1. 42 [(12) - (24)] (24)(17)(149)
			Where $K_Q = (k) \begin{bmatrix} (B_C) \\ (B) \end{bmatrix}^2 = (19) \begin{bmatrix} (128) \\ (20) \end{bmatrix}^2$
	(150)	W _{NPL}	POLE FACE LOSS - at no load. The pole surface losses are
		NI L	due to slot ripple caused by the stator slots. They
			depend upon the width of the stator slot opening, the
			air gap, and the stator slot ripple frequency. The no
			load pole face loss (WPNL) can be obtained from
			Graph 2. Graph 2 is plotted on the bases of open
			slots. In order to apply this curve to partially open
			slots, substitute b for b. For a better understand-
			ing of Graph 2, use the following sample.
			K ₁ as given on Graph 2 is derived empirically and
			depends on lamination material and thickness. Those
			values given on Graph 2 have been used with success
			K ₁ is an input and must be specified. See item (151)
			for values of K ₁ .
l	i /	ļ	

(150) (Cont.)

 K_2 is shown as being plotted as a function of $(B_G)^{2.5}$ Also note that upper scale is to be used. Another note in the lower right hand corner of graph indicates that for a solid line (____), the factor is read from the left scale, and for a broken or dashed line (_____), the right scale should be read. For example, find K_2 when $B_G = 30$ kilo lines. First locate 30 on upper scale. Read down to the intersection of solid line plot of $K_2 = f(B_G)^{2.5}$. At this intersection read the left scale for K_2 . $K_2 = .28$. Also refer to item (152) for K_2 calculations.

 K_3 is shown as a solid line plot as a function of $(F_{SLT})^{1.65}$ The note on this plot indicates that the upper scale X 10 should be used. Note F_{SLT} = slot frequency. For an example, find K_3 when F_{SLT} = 1000. Use upper scale X 10 to locate 1000. Read down to intersection of solid line plot of K_3 = $f(F_{SLT})^{1.65}$. At this intersection read the left scale for K_3 . K_3 = 1.35. Also refer to item (153) for K_3 calculations.

For K_4 use same procedure as outlined above except use lower scale. Do not confuse the dashed line in this plot with the note to use the right scale. The note does not apply in this case. Read left scale. Also refer to item (154) for K_4 calculations.

For K_5 use bottom scale and substitute b_0 for b_8 when using partially closed slot. Read left scale when using solid plot. Use right scale when using dashed plot. Also refer to item (155) for K_5 calculations.

74		i 1	·
	(150)	(Cont.)	For K_6 use the scale attached for C_1 and read K_6 from left scale. Also refer to item (156) for K_6 calculations.
			The above factors (K_2) , (K_3) , (K_4) , (K_5) , (K_6) can also be calculated as shown in (152), (153), (154), (155), (156), respectively.
			$\mathbf{W}_{\mathbf{PNL}} = \mathcal{T}(\mathbf{d})(\mathcal{L})(\mathbf{K}_1)(\mathbf{K}_2)(\mathbf{K}_3)(\mathbf{K}_4)(\mathbf{K}_5)(\mathbf{K}_6)$
			$= \pi(11)(13)(151)(152)(153)(154)(155)(156)$
	(151)	K ₁	${f K}_1$ is derived empirically and depends on lamination material and thickness. The values used successfully for ${f K}_1$ are shown on Graph 2. They are
			K ₁ = 1.17 for .028 lam thickness, low carbon steel
			= 1.75 for .063 lam thickness, low carbon steel
			3.5 for .125 lam thickness, low carbon steel7.0 for solid
			K ₁ is an input and must be specified on input sheet.
	(152)	K ₂	K ₂ can be obtained from Graph 2 (see item 150) for explanation of Graph 2) or it can be calculated as follows:
			$K_2 = f(B_G) = 6.1 \times 10^{-5} (B_G)^{2.5}$
			$= 6.1 \times 10^{-5} (125)^{2.5}$
	(153)	K ₃	K ₃ can be obtained from Graph 2 (see item 150) for explanation of Graph 2) or it can be calculated as follows:
			$K_3 = f(F_{SLT}) = 1.5147 \times 10^{-5} (F_{SLT})^{1.65}$
			$= 1.5147 \times 10^{-5} (153)^{1.65}$
			Where $F_{SLT} = \frac{(RPM)}{60}$ (Q)
			$=\frac{(7)}{60}$ (23)

İ	1	75
(154)	K ₄	K ₄ can be obtained from Graph 2 (see item (150) for explanation of Graph 2) or it can be calculated as follows:
		For γ ₈ ≤ .9
		$K_4 = f(\gamma_8) = .81(\gamma_8)^{1.285}$
		= .81(26) ^{1.285}
		For .9% 7 2.0
		$K_4 = f(\gamma_B) = .79(\gamma_B)^{1.145}$
		79(26) ^{1.145}
		For 7 > 2.0
		$K_4 = i(\tau_{\underline{n}}) = .92(\tau_{\underline{n}})^{.79}$
		92(26) ^{. 79}
(155)	K ₅	K ₅ can be obtained from Graph 2 (see item (150) for explanation of Graph 2) or it can be calculated as follows:
		For (b _g) / (g) £ 1.7
		$K_5 = f(b_g/g) = .3[(b_g)/(g)]^{2.31}$
		$= .3 [(22)/(59)]^{2.31}$
		NOTE: For partially open slots substitute b for b in equations shown.
		For 1.7<(b _g)/(g) ≤ 3
		$K_5 = f(b_g)/(g) = .35[(b_g)/(g)]^2$
		$35[(22)/(59)]^{2}$

	For $3 < (b_g) / (g) \le 5$
	$K_5 = f(b_g)/(g) = .625[(b_g)/(g)]^{1.4}$
	$= .625 \left[(22) / (59) \right]^{1.4}$
	For $(b_g)/(g)>5$
	$K_5 = f[(b_g)]/(g) = 1.38[(b_g)/(g)].965$
	= 1.38 (22) / (59) · 965
(156) K ₆	K ₆ can be obtained from Graph 2 (see item (150) for explanation
	of Graph 2) or it can be calculated as follows:
	$K_6 = f(C_1) = 10 \left[.9323(C_1) - 1.60596 \right]$
	= 10 [.9323(71) - 1.60596]
	· —

1 .		
(158)	1 ² R	STATOR I^2R - at no load. This item = 0. Refer to item (173) for 100% load stator I^2R .
(158a)		EDDY LOSS - at no load. This item = 0. Refer to item (173a) for 100% load eddy loss.
(159)		TOTAL LOSSES - at no load. Sum of all losses
		Total losses = (Rotor I ² R) + (F&W) + (Stator Teeth Loss) + (Stator Core Loss) + (Pole Face Loss) + (Damper Loss) = (146) + (147) + (148) + (149) + (150) + (157)

(16	36)	IFFL	FIELD CURRENT at 100% load
			$I_{FFL} = (F_{FL})/(N_F) = (165)/(99)$
(16	37)		CURRENT DENSITY at 100% load
			Current density = $(I_{FFL})/(a_{cf})$ = $(166)/(106)$
(16	38)	E _{FFL}	FIELD VOLTS at 100% load - This calculation is made
			with hot field resistance at expected temperature
			at 100% load.
			Field Volts = (I_{FFL}) $(R_{f hot})$ = $(166)(108)$
(10	69)	I ² R _F	FIELD I ² R at 100% load - The copper loss in the field
			winding is calculated with het field resistance at
			expected temperature for 100% load condition.
			Field $I^{2}R = (I_{FFL})^{2}(R_{F \text{ hot}}) = (168)^{2}(108)$
(17	70)	$\mathbf{w_{TFL}}$	STATOR TEETH LOSS at 100% load - The stator tooth
			loss under load increases over that of no load
			because of the parasitic fluxes caused by the
			ripple due to flux distortion.
			L.8
			$W_{TFL} = \left\{ 2 \left[27(X_d) \frac{(\% \text{ Load})}{100} \right] + 1 \right\} (W_{TNL})$
			NOTE (X _d) is in per unit
			$= \left\{ 2 \left[27(83) \right] + 1 \right\} (148)$

POLE FACE LOSS at 100% load

$$W_{PFL} = \left(\frac{(K_{sc})(I_{PH}) \frac{(\% Load)}{100}(n_{s})}{(C)(F_{g})}^{2} + 1 \right) (W_{PNL})$$

$$= \left(\frac{(171)(8) \ 1 \ (30)}{(32)(131)}^{2} + 1 \right) (150)$$

$$(K_{sc}) \text{ is obtained from Graph 3}$$

(173)	I ² R	STATOR 1 ² R at 100% load - The copper loss based on the D.C. resistance of the winding. Calculate at the maximum expected operating temperature.
		$I^{2}R = (m)(I_{PH})^{2} (R_{SPH hot}) \frac{(\% Load)}{100}$
		$= (5)(8)^{2} (54) 1.$
(173a)		EDDY LOSS - Stator I ² R loss due to skin effect
		Eddy Loss = $\frac{(EF_{top}) + (EF_{bot})}{2} - 1$ (Stator I ² R) = $\frac{(55) - (58)}{2} - 1$ (173)
(174)		TOTAL LOSSES at 100% load - sum of all losses at 100% load
		Total Losses = (Field I ² R) + (F & W) + (Stator Teeth Loss)
		+ (Stator Core Loss) + (Pole Face Loss) (Stator I ² R) (Eddy Loss)
		= (169) + (147) + (170) + (149) + (171) + (172) + (173) + (173a)

RATING IN WATTS at 100% load Rating = 3(E _{PH})(I _{PH})			
= 3(4)(8) (9)(1.) (176) RATING & Σ LOSSES = (175) + (174) (177) % LOSSES = Σ Losses / Rating + Σ Losses 100 = [(174) / (177)] 100 (178) % EFFICIENCY = 100% - % Losses = 100% - (177) Item (160) through (178) are 100% load calculations. These items can be recalculated for any load condition by simply inserting the values that correspond to the % load being calculated. The factor (% Load) takes care of (1 _{PH}) as it changes with load. Note that values for F & W (147) and W _C (Stator Core	((175)	 RATING IN WATTS at 100% load
(176) RATING & ΣLOSSES = (175) + (174) (177) % LOSSES = ΣLOSSES / Rating + Σ LOSSES] 100 = [(174)/(177)] 100 (178) % EFFICIENCY = 100% - % LOSSES = 100% - (177) Item (160) through (178) are 100% load calculations. These items can be recalculated for any load condition by simply inserting the values that correspond to the % load being calculated. The factor (% Load) takes care of (I _{PH}) as it changes with load. Note that values for F & W (147) and W _C (Stator Core			Rating = $3(E_{PH})(I_{PH})$ (P.F.) $\frac{(\% \text{ Load})}{100}$
(177) % LOSSES = Σ Losses / Rating + Σ Losses] 100 = [(174) / (177)] 100 (178) % EFFICIENCY = 100% - % Losses = 100% - (177) Item (160) through (178) are 100% load calculations. These items can be recalculated for any load condition by simply inserting the values that correspond to the % load being calculated. The factor (% Load) takes care of (I _{PH}) as it changes with load. Note that values for F & W (147) and W _C (Stator Core			= 3(4)(8) (9)(1.)
= \[\left(\frac{174}{\psi}\right) \] 100 (176) \[\frac{\pi}{\pi} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	((176)	 RATING & \(\sum_{\text{LOSSES}} = (175) + (174)
(176) % EFFICIENCY = 100% - % Losses = 100% - (177) Item (160) through (178) are 100% load calculations. These items can be recalculated for any load condition by simply inserting the values that correspond to the % load being calculated. The factor (% Load) takes care of (I _{PH}) as it changes with load. Note that values for F & W (147) and W _C (Stator Core		(177)	 ½ LOSSES = Σ Losses / Rating + Σ Losses 100
Item (160) through (178) are 100% load calculations. These items can be recalculated for any load condition by simply inserting the values that correspond to the % load being calculated. The factor (% Load) takes care of (I _{PH}) as it changes with load. Note that values for F & W (147) and W _C (Stator Core			= [(174) / (177)] 100
Item (160) through (178) are 100% load calculations. These items can be recalculated for any load condition by simply inserting the values that correspond to the % load being calculated. The factor (% Load) takes care of (I _{PH}) as it changes with load. Note that values for F & W (147) and W _C (Stator Core		(178)	 % EFFICIENCY = 100% - % Losses
These items can be recalculated for any load condition by simply inserting the values that correspond to the % load being calculated. The factor (% Load) takes care of (I _{PH}) as it changes with load. Note that values for F & W (147) and W _C (Stator Core			= 100% - (177)
by simply inserting the values that correspond to the % load being calculated. The factor $\frac{(\% \text{ Load})}{100}$ takes care of (I_{PH}) as it changes with load. Note that values for F & W (147) and W _C (Stator Core			Item (160) through (178) are 100% load calculations.
% load being calculated. The factor (% Load) takes care of (I _{PH}) as it changes with load. Note that values for F & W (147) and W _C (Stator Core			These items can be recalculated for any load condition
of (I _{PH}) as it changes with load. Note that values for F & W (147) and W _C (Stator Core			by simply inserting the values that correspond to the
of (I _{PH}) as it changes with load. Note that values for F & W (147) and W _C (Stator Core			% load being calculated. The factor $\frac{(\% \text{ Load})}{100}$ takes care
			100
		ļ	Note that values for F & W (147) and W (Stator Core
, , , , , , , , , , , , , , , , , , ,			

DISK-TYPE, OR AXIAL AIR-GAP LUNDELL TYPE AC GENERATORS

AXIAL AIR-GAP, LUNDELL TYPE, A.C. GENERATOR

DISK TYPE LUNDELL

R. LUNDELL. DYNAMO ELECTRIC MACHINE.

- The original Lundell generator patented by Robert Lundell in 1893 was an axial air-gap generator with the output windings rotating.
- The newer brushless, axial air-gap generator has the field structure rotating and the output winding is stationary. The brushes are eliminated through the use of auxiliary air-gaps.
- The weight of this machine is approximately the same as that of a radial gap Lundell generator of the same rating, speed and frequency. It can be built with two stators and one field coil for maximum output at a given diameter.
- The output of the disk-type or axial-gap Lundell generator is a function of the third power of the stator diameter, $(D)^3$.
- If a single-stator axial-gap generator and a radial-gap generator are built with the same KVA, frequency, RPM, air-gap flux density, and stator ampere loading (or the same reactances) the rotor of the disk-type generator will be a minimum of two (2) times the diameter of the radial-gap generator. See derivations in Second Quarterly Report.
- At the same rating and conditions of load, the single-stator axial airgap machine operates at four (4) times the stress level of the radial-gap machine.

- The outputs of all of the Lundell generators are functions of the third power of their rotor diameters (d)³, but for equal maximum rotor stresses, the radial gap generator will have (2)³ or 8 times the output of the disk-type machine.
- Though the machine weights are comparable, the disk-type machine has ${
 m more}\ WR^2$ and more gyroscopic moment than the radial gap Lundell machines.
- The attractive force, due to air-gap flux, between the rotor and stator of the single-stator machine is great and the single-stator configuration cannot be used with fluid bearings. The more balanced two-stator design must be used with fluid bearings.
- In some cases, the axial air-gap machines are advantageous because of their physical configuration and the design procedure is included in this study for completeness.

COMPLETE FLUX CIRCUIT OF A SINGLE-STATOR, AXIAL-GAP, LUNDELL, A-C GENERATOR LEAKAGE FLUXES ARE INCLUDED

ELECTROMAGNETIC PARTS OF A SINGLE STATOR, AXIAL GAP, LUNDELL, A-C GENERATOR

ELECTROMAGNETIC PARTS OF A TWO-STATOR, AXIAL GAP, LUNDELL A-C GENERATOR

(b) Constant Slot Width

(c) Constant Tooth Width

(d) Round Slots

Fig 1

2 15 15 15 15 15 15 15																														14	. LJ			•											
Correct Factors Correct Fa	П			-	71/	1	\top	3	12			284	793	383	443	图.	875	8,9	598	930	113	989	402	778	804	356	995	162	910	637	23	25	88	₫,	792	79/	22	33	166	187	844	īTī	557	947	063
Colore C		7	\dashv	\dashv	T	1	_	ヸ	1	12/	1,	8		3	948	52	33	17,	454	786	8	952	829	200	951	025	396	525	999	905	20	940	414	35	94	512	연,	797	121	111	407	466	175	894	Zad
Charge Factors Charge Factors Charge		\neg	\top			/ls		\top	Ť	-	2	3	60	600	9	80	Š	8		0	304	90	809	304	0	8	3	80	Š	0	304	8	8	304	0,	<u>کا</u> ک	Ž,		Š	<u> </u>	309	904	\$	399	ر ا-
Charge Factors Charge Factors Charge			_	-	7	+	1	-	E	1	+	529	<u> </u>	8	22	55	3	196	4	331	33.	44	188	550	SS	181	4	331	331	\$	381	55	2	<u>چ</u>	#	$\bar{\tilde{z}}$	ā.	₹ 5	<u>=</u>	3.		181	*	831	2
Charge Factors Charge Factors Charge	H		\dashv	1	_	\dashv	+	+	٦.	12		20	33	Ŧ	3	88	2	3	₹	1,60	348	7	35	×	183	0	2	573	3	1660	384	98	3	9	2	Ž.	2	3	8	353	3	465	525	89	101
Charge Factors Charge Factors Charge	H	\dashv		1	-+	7	\dashv	\dashv	+	-	Ŗ	3.5	334	25	99	2	<u>88</u>	٤	Ξ	96	3	22/	5 188	42	2	83	35	17.	42	36	55	90	્ર	9	39	2	4	ō	82	3	<u></u>	63	E	196	
Charge Factors Charge Factors Charge	\vdash	E	9	8	77	2	<u>ø</u> ,	Į,	<u>z</u>	12	2	19	99	0	5 79	39	9	3	3	0.0	3	8	30.0	38	3	0.	665	79	0	99	3 99	9	9	99	9	99	3	9	99	29	5	39	79	0	1//
Charge Factors Charge Factors Charge	H	7	*	0.	3 0-1	5/ ;	7 3	<u> </u>	5 5	20 -	8	18	816	3	100	88	욼	3	388	2/0	<u>190</u>	8	0 %	9	18	88	180	8 35	82	8/0	9	읡	8 18	8	5	88	25	3	88	018	3	8 7 6	8 76	99	10
Charge Factors Charge Factors Charge		\dashv	\vdash	-		+	+	\dashv	+	17		$\frac{8}{2}$	3	<u> </u>	딍	5	20	4	33.9	7 95	55	35.88	100	37 (5	17/2	18	77.4	37.4	18	2	58	99	20	9	S	3	9	7	200	3	<u> </u>	8	38	8	1/1/10
76			\vdash		-	-	-+		3	<u> </u>	4	27	200	등	9	568	5	18	5	1 76	<u>15</u>	8 2	199	128	25	-	35	27.5	10	18	0	اع	8	8	2	2	20	5	80	ထုံး	79	9	1 99		14
76	Ш				\dashv	\perp	\perp	- !	"		4		8	=	2,3	9	55	13	<u>-</u>	83	90 2	375	98	3	3	-8	75	8	93	36	332	55.	1 99	99	=	\$8	8	319	797	99	1 55	3.	4	83	Ľ,
76		Ц	\Box		_		-	27	\downarrow	_	\dashv	Ξ	8	12	29	3	62	722	8	90	322	362	5.0	62	727	9	90	122	19	0.6	29	n	욁	9	7	762	<u></u>	299	3 22	\$ 90	90	122	12	=	Ļ
76							2	\perp	\perp			72	3	3,	<u>.6</u>	8	701	98	38	3	76	42	100	819	90	70,	966	574	25	90,	90	552	5	99	2	8	ಹ	96	42	42	3	رق	90	2	
76						<u>*</u>					77.7	*	5	30	20,	978	804	105	699	٥	699	50	18	978	500	ľŠ	3	4.0	309	50	97.6	8	<u>[8</u>	.99	9	3	<u>§</u>	8	9.6	ઝ્ર	309	414	9	3	1,2
76						_ [T	_[72/22		*	918	345	₹.	958	98	1231	550	486	802	15	643	948	727	00	727	448	643	31	802	985	35	33	998	928	597	₹	8	<u>8</u> =	34.	597	958	998	221
76					3/12				200			750	474	383	383	426	424	383	383	476	434	363	383	726	42€	383	383	476	424	383	383	424	924	383	383	424	477	383	383	424	#26	383	383	2,0	0.0
76					_			12/91	T,			782	931	434	295	998	975	583	841	782	997	680	0.0	89	997	282	148	583	975	998	345	\$	431	431	2	345	86¢	975	583	(48	182	447	989	00	હ
76									1		28	12	*	\$2	259	834	348	629	252	101	449	E	25	545	3	397	35	90	391	300	35	35	11	449	707	2	2	88	834	359	54	934	34	3	9
76	<u>~</u>			74			18	_		127	$\overline{}$	52	3	000	74	3	0	35	*	00	3	3	, g	2	3	0	79/	2	8	9	<u>+</u> 0	90	7	991	0	3	ŧ	9	9	140	8	1	991	0	1
76	<u> </u>					1	-	1	*	N .	+	2	47	565	65	5	18	14	7	95	52	98	3.	17	217	=	8	25	35	25	41	18	2	65 7	56	5	5	56.5	6 5 9	95.	18	6	3	95	
76	ž├─				\dashv	3	\dashv		Z ,	_	3	8	5,9	98	0	98	51.9	51.8	120	0	88	51.0	18	88	3	88	2 2	517	88	0	88	519	51 6	88	50	88	515	5 12	0 88	0	68	18	115	8	15
76	<u> </u>					2	-	2,5	\dashv	\dashv	~	8	6 95	23 5	250	500	9	6 68	33.5	230	555	26 4	0	55	102	3 5		89		10	15 51	23 9	569	565	130	5	0	610	845	33.0	53	5 4	592	10	15
76	<u>~</u>	-	\vdash	-	-		-	2	+	. 2	\dashv	8 5	68	<i>B</i> 6	0 9	Z S	9	68	1,70	17	31.3	18	1 5	100	9 5	0	1,7	9	0	125	=	2 2	7 9	9 4	99	0	<u>1</u> 2	139	9	188	13.7	19	80	-	3
76	<u>-</u>	_	10	\dashv	7	-	80	-	3	22	.2	88	6 9	7 6	4 (1	4	186	99	186	7.3	9	12	4	. 3	2 4	0	5 15	0	90	9	129	7.34	4 86	94	28	3	=	19/	49	9	191	=	3	100	10
76	<u>.</u>		1%	_	گر	_	[2]		\$	_	152	8	3 96	્ 9	52 9	8 25	6 أم	368	36,8	070	25	725	102	196	ď	3	2	12,	1.2	196	189	0/0	3 25	5 25	0 70	96.9	969	2,0	\$ 25	3.25	120	96	196	12	掉
76		_	Ш	_		_	4	_	_	162	\dashv	8	25	3/2		90	20	279	5	594	1 68	7		100	, &	15	0.00	100	Ì	28	199	2	5 93	5 79	50	405	3	7,7	4	4	25	39	1,0	100	1
76	ž ž	<u>. </u>	Ш				_ ;	<u>2</u> 2				8	47	78	43	0.0	43	78	18	47	28	1	Ìè	,3	70	9,	5	100	3	Ö	Ť	78	97	47	18	43	0	£,	78	16	9	18	2	0	1
76	\$ 5					13/15					%	867	978	80,	500		36.	99	1.6	0	15	3	16	٤, ٤	2 6	įŠ	3 6	97	8	S, is	Š	3	999	3	0:	916	599	30	2	1 <u>x</u>	8	15			
76	- 1								×2,7			875	186	831	558	[17]	14	556	ž,	ã	180	: E	100	4	į	556	23	a.	4	3	32	195	135	556	831	481	981	83	55.	195	5		83	186	1 6
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7	<u></u>			6/8			16/8			12/52		88	985	598	₩9	345	90	342	£	88	ž,	š	12	3	1 1 2	5	2 5	. 3	3 €	98	985	96	649	3	0.0	343	£49	198	988	985	977	3	342	0	
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7	و										04/12	906	988	168	707	454	156	156	5.	2	200	8	900	3	5 15	15.	2	3/2	5 5	2	991	488	988	891	707	まさ	156	3	454		00	88	988	841	
7,5 7,6 7,7 7,7 7,7 7,7 7,7 7,7 7,7	బ							ž				90	984	106	733	500	223	075	ž	624	227	3 6	<u> </u>	2 3	2 10	3 3	376	3	223	500	793	901	186	8	901	733	ક્ર	223	575	365	77.4	32	7 %	श	•
4. 1/10 1. 3/3 1. 1/10 <th< td=""><td>Ē</td><td></td><td>П</td><td></td><td>7/1</td><td></td><td>\dashv</td><td>-</td><td>.Ž</td><td></td><td></td><td>117</td><td>141</td><td>424</td><td>793</td><td>609</td><td></td><td></td><td><u>~</u></td><td>383</td><td>18</td><td>ě</td><td>3, 2</td><td>0</td><td></td><td>. 6</td><td>2 8</td><td>3</td><td>38.</td><td>- E</td><td>~</td><td>383</td><td></td><td></td><td>124</td><td>12.</td><td>49</td><td>±2</td><td>13</td><td>503</td><td>1</td><td>· =</td><td>Ē</td><td>16</td><td>Ť</td></th<>	Ē		П		7/1		\dashv	-	.Ž			117	141	424	793	609			<u>~</u>	383	18	ě	3, 2	0		. 6	2 8	3	38.	- E	~	383			124	12.	49	±2	13	503	1	· =	Ē	16	Ť
4 1/12 3/3 1/16 1		T						Ť		72/		92	193	940	35	789	00	181	95	2	ž	2 6	1 3	3 2	2 2	· c	3.5	1	3	5	961	12	85	181	8	198	335	9	3	Ě	9	i ă	8,	3 8	į.
6 18/8 2/1 2/2 2/6 2/2	읽ㅡ	\vdash	Н			75	7	\dashv	1	7	30	34.9	195	15.	77	£	88	107	60	9	90	3 5	9	9 3	2 3	<u> </u>	, v	100	· ·	38	3	85	5	80	0	8	6	8	3	79	1 2	š	8	10	#
9. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	∄ ⊢	\vdash		Н	Н	-	<u>æ</u>	1	\dashv	-	Ŋ.	6 54	96	99	90	5	07	7	2	265	97	3	2 6	; ;	3 2	3	3 9	7	3 3	396	96	5 99	79	19	20	7	22	25	37	8	1 8	, <u>s</u>	14.9	100	#
9. % 1. 3/3 2. 6/6 3. 9/4 4. 1/12 5. 6/6 6. 18/8 8. 1/12 9. 1/12 10. 3/12 10. 3/12 11. 10. 10/12 12. 10. 10/12 13. 10. 10/12 14. 10. 10/12 15. 10. 10/12 16. 10/12 17. 10. 10/12 18. 10. 10/12 19. 10. 10/12 19. 10. 10/12 10. 10/12 11. 10. 10/12 12. 10. 10/12 13. 10. 10/12 14. 10. 10/12 15. 10. 10/12 16. 10/12 17. 10/12 18. 10. 10/12 19. 10. 10/12 19. 10. 10/12 19. 10. 10/12 10. 10/12 11. 10. 10/12 12. 10. 10/12 13. 10. 10/12 14. 10. 10/12 15. 10. 10/12 16. 10/12 17. 10/12 18. 10. 10/12 19. 10. 10/12	\vdash	├	\vdash				=	\ ~	\dashv	_	Н	29	179	15	611	8 99	32.7	30.5	27	¥ 2	2	3		2 3		<u> </u>	10		5 5	1 9	31.0	15.9	77	118	15	35	795	32	5	8) <u>-</u>	1 2	<u>. 15</u>	16	ţ.
2 2 4 4 3 2 4 4 3 2 4 4 4 4 4 4 4 4 4 4	\vdash	-					-		*		Н	9 95	6 8	, 5	17	11.8	12	190	6	7	2 2	• • = • • =	- 9	<u>خ</u> د	- }	1 2	2 :	2 2	1 1	9	10	3	100	7	7 9	8	8	E	11/2	75	113	. ~	<u> </u>	10	+
2	<u> </u>	\vdash	\vdash		Щ		\sqcup		30	, E	Ш	\$6 4	94	28	9	18	90	Ľ,	1/2	7	3	5 0	2 2	- Z	5 12	2 2	- -^	<u>ة</u> أ	- 1 4	65	1.5	3.8	1g	294	1669	8	1,6	19	10	80	<u>م</u> اد	3 ×	15	2 2	#
2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	 	L	Ц	Щ	Щ		\sqcup		_	42		8	8	98	195	3 91	78	1,62	17	3	25		7 4	5 5	2 6		3 13	<u> </u>	1 .2	2 2	55	39	5 77	153	18	191	9 95	86	13	665	110	3 6	16	8	1
2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	_		<u>L</u>		Щ						162	39	ž	-86	13	19	8	33,	1	1,0	3	ن ا	7 3	- 14	5	ع ا ر	<u>خ</u> اِخ	S	31.2	25	35	1 3	13	29	16	E	180	8	1.0	18	j	66	18	F	1
100 10		3/3	9/9	6/6	1/4	15/5	8/8	77	*	η_{ν}	130	0.	3	,2			2	2,	2	2,9	15	? ;	3 5		? {	3 5	2 5	3/5	2 2	2 0	5			12		15	13	15	13	15			15	علا	生
	o's	_	7	3	4	5	9	~	∞	6	2	3/5	-	~	2	~	9	=	2	2	1	: 9		2/2	ध	2 5	2 5	5 4	7 7	3	12	185	4	1.3	45	5	4	12	5	1 5	: 5	38	1	9 2	<u>; </u>

VALUES OF K_{dn} FOR INTEGRAL-SLOT, 3 WINDINGS - TABLE 2

ኪ			k	dn - HAR	MONIC D	ISTRIBU	TION FA	CTORS		
q=	2	3	4	5	6	7	8	9	10	∞
	.966	.960	. 958	.957	.957	.957	.956	.955	.955	.955
3	.707	.667	.654	.646	. 644	.642	. 641	. 640	. 639	. 636
5	. 259	. 217	. 205	. 200	. 197	. 195	. 194	. 194	.193	.191
7	- 259	177	158	149	145	143	141	- 140	140	136
9	707	333	270	247	236	229	225	-,222	220	212
11	966	177	126	110	/02	097	095	093	092	087
13	966	.217	. 126	. 102	. 092	. 086	. 083	.081	. 079	.073
15	707	. 667	.270	. 200	. 172	.158	. 150	. 145	. 141	.127
17	259	. 960	. 158	. 102	.084	. 075	.070	.066	.064	.056
19	259	.960	205	110	084	072	066	062	060	059
21	.707	. 667	654	247	- ,172	/43	127	118	112	091
23	.966	. 217	- 958	149	092	072	063	057	054	041
25	.966	127	- 958	.200	./02	. 075	. 063	.056	.052	.038
27	.707	33 <i>3</i>	654	. 646	. 236	. 158	. 127	.111	.101	.07/
29	.259	177	205			.086	. 066	. 056	. 050	. 033
3,	259		.158			097	- 070	057	- ,050	03/

33	709	. 667	. 270	.646	644	229	150	118	101	058
35 35	966	. 960	.126	, 200	957	143	083	062	052	027
37	966	.960	126	149	- ,957	. 195	.095	. 066	. 654	. 026
39	707	.667	- , 270	247	644	.642	.225	.145	.112	. 049
41	259	. 217	158	//0	197	.957	.141	.081	060	. 623
43	. 259	- 177	. 205	. 102	. 145	.957	194	093	064	022
45	.707	333	.654	. 200	.236	.642	641	222	141	042
47	.966	177	.958	. 102	. 102	. 195	956	140	679	020
49	.966	.217	. 958	110	092	143	956	.194	.092	. 019
51	.707	.667	.654	- , 247	172	229	- ,641	. 640	. 220	. 03 8
53	.259	. 960	. 205	149	084	097	- , 194	.955	.140	.018
55	- , 259	.960	158	. 200	.084	. 086	. 141	,955	193	017
57	707	. 667	- ,270	.646	.172	. 158	, 225	. 640	639	033
59	966	.217	126	,957	.092	. 075	.095	, 194	955	016
61	- 966	177	.126	.957	102	072	083	140	- ,955	. 016
63	707	333	. 270	. 646	236	- , 143	150	222	639	.030
65	- 259	177	.158	. 200	145	072	070	093	193	.015

SIZE	BARE	AREA	-N-/1000'	SINGLE	HEAVY	SINGLE GLASS	BARE WT.	SINGLE GLASS	Double GLASS
AWG	DIAMETER	۵"	@25°C	FORMVAR	FORMVAR	FORMVAR	#/1000	SILICONE	SILICONE
36	.0050	.0000196	424	. 0056	.0060		. 0757		
35	.0056	.0000246	338	. 0062	. 0066		.0949		
34	.0063	. 0000312	266	.0070	. 0074		. 1201		
33	. 0071	.0000396	210	.0079	.0084		.1526		
32	.0080	.0000503	165	.0088	.0094	.0121	. 1937		
31	.0089	.0000622	134	.0097	.0104	.0130	.2398		
30	.0100	.0000785	106	. 0108	.0116	.0142	. 3025	.0132	. 0152
29	.0113	.000100	83.1	.0122	.0130	.0156	. 3866	.0145	.0165
28	.0126	.000125	66.4	.0135	.0144	.0169	.4806	.0158	.0178
27	.0142	.000158	52.6	.0152	.0161	.0186	.6101	.0174	.0194
26	.0159	.000199	41.7	.0169	.0179	.0203	.7650	.0191	.0211
25	.0179	.000252	33.0	.0190	.0200	. 0224	.970	.0211	.0231
24	. 0201	.000317	26.2	.0213	.0223	.0263	1.223	.0251	.0276
23	.0226	.000401	20.7	.0238	.0249	.0289	1.546	. 0276	.0301
22	.0254	. 000507	16.4	.0266	.0277	.0317	1.937	. 0303	. 0328
21	.0285	.000638	13.0	.0299	.0310	.0349	2.459	.0335	.0360
20	.0320	.000804	10.3	.0334	.0346	. 0384	3.099	.0370	.0395
19	.0360	.00102	8.14	.0374	. 0386	.0424	3.900	.0409	.0434
18	. 0403	.00126	6.59	. 0418°	.0431	.0468	4.914	.0453	. 0478
17	.0453	.00159	5.22	.0469	.0482	.0519	6,213	.0503	.0528
16	.0508	.00204	4.07	.0524	.0538	0575	7.812	.0558	.0583
15	. 0571	.00255	3.26	.0588	.0602	.0639	9.87	.0621	. 0646
14	.0641	.00322	2.58	.0659	.0673	.0710	12.44	.0691	.0716
13	.072	.00407	2.04	.0738	.0753	. 0789	15.69	. 0770	.0795
12	.0808	.00515	1.61	.0827	.0842	.0877	19.76	.0858	.0883
11	.0907	.00650	1.28	.0927	.0942	.0977	24.90	.0957	.0982
10	.102	.00817	1.02	.1039	.1055	.1089	31,43	.1069	.1094
9	.114	.0102	.814	.1165	.1181	.1225	39.62	.1204	.1254
8	.129	.0131	.634	.1306	.1323	.1366	49.98	.1345	.1395
7	.144	.0163	.510	.1465	.1482	. 1525	63.03	.1503	.1553
6	.162	.0206	.403	.1643	. 1661	.1703	79.44	. 1680	.1730
5	.182	.0260	. 319	.1842	.1861	.1902	/00.2	.1879	.1929
4	.204	.0327	.254	1			126.3	.2103	. 2153
3	.229	.0412	.202		1		159.3	1	
2	.258	.0523	.159				200.9		
0	.325	.0830	.100	<u> </u>	1		1		
2/0	.365	.105	.0791	 	 			 	
4/0	.460	.166	0500	1	+		 	+	†

From E. I. Pollard "Calculation of No-Load Damper Winding Loss in Synchronous Machines", AIEE Vol. 51, 1932, pp 477-81.

ACCOPTER A CABER CO., N. 1. NO. 369
10 - 10 to the 's inch, 5th lines accents
MARK in a s.

Cm &

1000 CURVE 12 909 21 1 2 400 1,25% de 200 (A) (B) aterial qurve qurve Gurve 111 100 9. 8. per 40 30 40 Turns 3 SEMI-LOGARITHMIC 359-71
KEUFFEL & ESSER CO. MARE IN U.S.A.
3 CYCLES X 70 DIVISIONS 10 9_ 8_ X W 5 S 140 130 120 110 100 Üó 80 70 30 40 50 9,, הרד הלשמדה

DISC - TYPE SYNCHRONOUS GENERATOR

STATOR	ROTOR	
STATOR I.D.	SINGLE GAP	STATOR
STATOR O.D.	ROTOR O.DI.D	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
CORE LENGTH	PERIPHERAL SPEED	DIA.
DB5 x 2	POLE PITCH ~	7 '
SLOTS	POLE AREA-OUTER	/ DIA.
CARTER COEFF.	POLE AREA-INNER	0.0.
	ROTOR LEAKAGE	I,D,
TYPE WizDGH:	POLE DENSITY	•
THROW	ROTOR IRON	
SKEW & DIST FACT.		, ,
CHORD FACTOR	DAMPER BARS Nº	SLOT
COND. PER SLOT	BAR SIZE	
TOTAL EFF. COND.	BAR PITCHho bo] }
COND PIZE	FIELD COIL TURNS	
COND AREA		
CURRENT DENSITY	COND. SIZE	0.47110.4710.11
WDG.CONSTC,	COND AREA	SATURATION
TOTAL FLUX	MEAN TURN_	AIR GAP AT
gap area	RES@	STATOR AT
GAP DENSITY	% WAD	POLE AT
POLE CONST.	P.F.	NO LOAD AT
FLUX PER POLE	AMPS	RATED LOAD AT
SHAFT FLUX	.1	OVERLOAD AT
TOOTH PITCH	VOLTS	SHORT CIRCUIT AT
TOOTH DENSITY	I ² R	
CORE DENSITY	AMPS/IN.2	LOSSES - EFFICIENCY
GRADE IRON	FIELD SELF IND.	% LOAD
MEAN TURN	DAMP. LEAK XDdXDg	
RES/PHASE @°	REACTION-TIME CONSTANT	F¢W
EDDY FACT TOP		STA. TEETH
E.F. AVE EFF, BOT	SYNCH . Xd X4	STA. CORE
DEMAG. FACT. CmCq	UNSAT, TRANS.	POLE FACE
AMP COND. PER IN	SAT. TRANSXg"	DAMPER
REACT. FACTOR	SUBTRANS. Xc"Xg"	STA. I ² R
COND. PERM.	NEG. SEQUENCE	FIFE D T2 0
END PERM.	zero sequence	E LOSSES
LEAKAGE REACT	OPEN CIR. TIME CON.	RATING
AIR GAP PERM.	ARM. TIME CON.	RATING & LOSSES
REACT. OF ARM. Xad Xag	TRANC THAT COM	% LOSSES
WT. OF COPPER	SUBTRANS. TIME CON.	- 0/ CEE
WT. OF IRON	-	% EFF
KVA% P.F	VOLTSAM	PSPHASE
CYCLES/SEC	POLES RE	M BY

AXIAL AIR-GAP, LUNDELL TYPE A.C. GENERATOR, DESIGN MANUAL

(1)		DESIGN NUMBER - To be used for filing purposes.
(2)	KVA	GENERATOR KVA
(3)	E	LINE VOLTS
(4)	E _{PH}	PHASE VOLTS - For 3 phase, connected generator
		$E_{PH} = \frac{(Line\ Volts)}{\sqrt{3}} = \frac{(3)}{\sqrt{3}}$
		For 3 phase, connected generator
		$E_{PH} = (Line Volts) = (3)$
(5)	m	PHASES - number of
(5a)	f	FREQUENCY - In cycles per second
(6)	P	POLES - Number of
(7)	RPM	SPEED - In revolutions per minute
(8)	I _{PH}	PHASE CURRENT - In amperes at rated load
(9)	PF	POWER FACTOR - Given in per unit
(9a)	K _c	ADJUSTMENT FACTOR - When PF = 0. to .95 set $K_c = 1$; when PF = .95 to 1. set $K_c = 1.05$

(10a)	d	STATOR EQUIVALENT DIAMETER
		$d = \frac{(O.D.) + (I.D.)}{2} = \frac{(12) + (11)}{2}$
(11)	I. D.	STATOR I.D The inside diameter of the stator toroid in inches.
(12)	O.D.	STATOR O.D The outside diameter of the stator toroid in inches
(13)	Q	GROSS CORE LENGTH - In inches $Q = \frac{(O.D.)-(I.D.)}{2} = \frac{(12)-(11)}{2}$
(16)	K _i	STACKING FACTOR - This factor allows for the coating (core plating) on the punchings, and the looseness of the ribbon. Approximate values are giver in Table IV.
		THICKNESS OF LAMINATIONS (INCHES) GAGE K _i .C14 29 0.92 .018 26 0.93 .025 24 0.95 .028 23 0.97 .063 0.98 .125 0.99
		TABLE IV

		3
(17)	Q _s	SOLID CORE LENGTH - The solid length is the gross
		length times the stacking factor.
		$\mathbf{l}_{S} = (K_{i}) \times (\mathbf{l}) = (16) \times (13)$
(18)		MAGNETIZATION CURVES are to be available for stator,
		pole and yoke.
(19)	k	<u>WATTS/LB</u> - Core loss per lb of lamination material.
		Must be given at the density specified in (20).
(20)	В	DENSITY - This value must correspond to the density
		used in Item (19) to pick the watts/lb. The
		density that is usually used is 77.4 kilolines/in ² .
(21)		TYPE OF STATOR SLOT - Refer to Figure 1 for
		type of slot.
(22)	b ₀	
•	b ₁	
	b ₂ >	ALL SLOT DIMENSIONS - Given in inches per Figure 1.
	b ₃	Note: For Type (c) slot
	b _S	$(b_1) + (b_2) + (22)$
	h ₀	$b_{s} = \frac{(b_{1}) + (b_{3})}{2} = \frac{(22) + (22)}{2}$
	h ₁	
	h ₂	
	h3	
	h _s	
	ht	
	h _w	

	1	
(23)	Q	STATOR SLOTS - number of
(24)	h _c	DEPTH BELOW SLOTS - The depth of the stator core
		below the slots. $h_c = t_{to} - h_s = (24) - (22)$
		Where to is the thickness of the stator core.
		t_{to}
(25)	q	SLOTS PER POLE PER PHASE
		$q = \frac{(Q)}{(P)(m)} = \frac{(23)}{(6)(5)}$
(26)	$\Upsilon_{ m s}$	STATOR SLOT PITCH (average)
		$\Upsilon_{\rm S} = \frac{\Upsilon(\rm d)}{Q} = \frac{\Upsilon(10a)}{(23)}$
(27)	$\gamma_{ m s/1/3}$	STATOR SLOT PITCH - 1/3 distance up from narrowest
		section of tooth.
	i	$\Upsilon_{\rm s~1/3} = \Upsilon_{\rm s} = (26)$
(28)		TYPE OF WINDING - Record whether the connection is
		"wvc" of "delta".
(29)		TYPE OF COIL - Record whether random wound or formed
		coils are used.

(30)	n _s	CONDUCTORS PER SLOT - The actual number of con-
		ductors per slot. For random wound coils use
		a space factor of 75% to 80%. Where space
		factor is the percent of the total slot area
		that is available for insulated conductors after
		all other insulation areas have been subtracted
		out.
(31)	У	THROW - Number of slots spanned. For example, with
(01)	,	a coil side in slot 1 and the other coil side
;		
		in slot 10, the throw is 9.
(31a)		PERCENT OF POLE PITCH SPANNED - Ratio of the number
		of slots spanned to the number of slots in a
		pole pitch
		(Y) (31)
		$= \frac{(\Upsilon)}{(m)(q)} = \frac{(31)}{(5)(25)}$
(32)	С	PARALLEL PATHS, no. of - Number of parallel circuits
(02)		per phase
		per piase
(33)		STRAND DIA OR WIDTH - In inches. For round wire,
		use strand diameter. For rectangular wire,
		use strand width.

(34)	$^{ m N}_{ m ST}$	NUMBER OF STRANDS PER CONDUCTOR IN DEPTH -
		Applies to rectangular wire. In order to have
		a more flexible conductor and reduce eddy current
		loss a stranded conductor is often used. For
		example, when the space available for one
		conductor is .250 width x .250 depth, the
		actual conductor can be made up of 2 or 3
		strands in depth as shown.
		ONE STRAND { ONE CONDUCTOR
		For a more detailed explanation refer to section
		titled "Effective Resistance and Eddy Factor"
		in the Derivations in Appendix.
(35)	d _b	DIAMETER OF BENDER PIN in inches - This pin is used in forming coils
(36)	↓ Le2	COIL EXTENSION BEYOND CORE in inches - Straight por-
	762	tion of coil that extends beyond stator core.
(37)	${ m h_{ST}}$	HEIGHT OF UNINSULATED STRAND in inches
(38)	h'st	DISTANCE BETWEEN CENTERLINES OF STRANDS IN
: : : : :		DEPTH in inches.
 	•	

	1	1
(39)		STATOR COIL STRAND THICKNESS in inches - For rectangular conductors only. For round wire use 0.
(40)	$ ho_{ m SK}$	SKEW - Stator slot skew in inches at main air gap. To be measured at the stator O.D. as the devi- ation from a radial line at that point.
(41)	$\Gamma_{\mathbf{p}}$	POLE PITCH in inches (average) $ T_{\rho} = \frac{\pi(d)}{(P)} = \frac{\pi(10a)}{(6)} $
(42)	K _{SK}	SKEW FACTOR - The skew factor is the ratio of the voltage induced in the coils to the voltage that would be induced if there were no skew
		$K_{SK} \frac{\sin \left[\frac{\pi(\tau_{SK})}{2(\tau_{P})}\right]}{\frac{\pi(\tau_{SK})}{2(\tau_{P})}} = \frac{\sin \left[\frac{\pi(40)}{2(41)}\right]}{\frac{\pi(40)}{2(41)}}$
(43)	к _d	DISTRIBUTION FACTOR - The distribution factor is the ratio of the voltage induced in the coils to the voltage that would be induced in the coils if the winding were concentrated in a single slot. See Table 2 for compilation of distribution factors for the various harmonies.
		$K_{d} = \frac{\sin \left[\frac{(q)(\alpha_{s})}{2}\right]}{(q)\sin \left[\frac{(\alpha_{s})}{2}\right]} \text{ where } \alpha_{s} = \frac{180^{\circ}}{(m)(q)}$

$$\therefore K_{d} = \frac{\sin [90^{\circ}/(m)]}{(q) \sin [90^{\circ}/(m)(q)]} = \frac{\sin [90^{\circ}/(5)]}{(25) \sin [90^{\circ}/(5) \times (25)]} \text{ For (25) = Integer}$$

or

(45)

(46)

$$K_d = \frac{\sin[N\alpha(m)/2]}{N\sin[\alpha(m)/2]}$$
 where $N \neq Integer = \frac{(Q)}{(m)(P)} \times Integer & \alpha m = \frac{180^{O}}{N\times(m)}$

$$\therefore K_{d} = \frac{\sin \left[90^{\circ}/(m)\right]}{N \sin \left[90^{\circ}/N(m)\right]} = \frac{\sin \left[90^{\circ}/(5)\right]}{N \sin \left[90^{\circ}/N \times (5)\right]} \text{ For (25) = Integer}$$

(44) K_P PITCH FACTOR - The ratio of the voltage induced in the coil to the voltage that would be induced in a full pitched coil. See Table 1 for compilation of the pitch factors for the various harmonics.

$$K_{\mathbf{p}} = \sin \left[\frac{(Y)}{(m)(q)} \times 90^{O} \right] = \sin \left[\frac{(31)}{(5)(25)} \times 90^{O} \right]$$

fective series conductors in the stator winding taking into account the pitch and skew factors but not allowing for the distribution factor.

$$n_e = \frac{(Q)(n_s)(K_p)(K_{SK})}{(C)} = \frac{(23)(30)(44)(42)}{(32)}$$

CONDUCTOR AREA OF STATOR WINDING in (inches)²
The actual area of the conductor taking into account the corner radius on square and rectangular wire.

See the following table for typical values of corner radii

If (39) = 0 then
$$a_c = .25\pi(Dia)^2 = .25\pi(33)^2$$

If (39) \neq 0 then $a_c = (N_{ST})$ (strand width) (strand depth) - (.0001 _c)	If (39) \neq 0 then $a_c = (N_{ST})$	(strand width)	(strand depth) -	$(.858 r_c^2)$
--	--	----------------	------------------	----------------

=
$$(34)$$
 (33) (39) - $\{.858$ $r_c^2\}$

where $.858\,\mathrm{r_c}^2$ is obtained from Table V below.

<u>(39)</u>	(33) . 188	. 189 (33) . 75	(33) .751
. 050	.000124	. 000124	. 000124
.072	.000210	. 000124	. 000124
. 125	.000210	. 00084	. 000124
. 165	.000840	. 00084	. 003350
. 225	.001890	. 00189	. 003350
. 438		. 00335	. 007540
. 688		. 00754	. 01340
		. 03020	. 03020

TABLE V

conductor

$$S_S = \frac{(I_{PH})}{(C)(a_C)} = \frac{(8)}{(32)(46)}$$

(48) L_{E} END EXTENSION LENGTH in inches

When (29) = 0 then

$$L_{E} = .5 + \frac{K_{T} \pi(Y)[0.D.]}{Q} = .5 + \underbrace{\begin{bmatrix} 1.3 & \text{if } (6) = 2 \\ 1.5 & \text{if } (6) = 4 \\ 1.7 & \text{if } (6) > 4 \end{bmatrix}}_{(23)} \pi (31) \left[(12) \right]$$

When (29) = 1. then:

$$L_{E} = 2 \cdot \left[e_{2} + \pi \left(\frac{\text{dia}}{2} \right) \right] + \gamma \left(\frac{\Upsilon_{s}^{2}}{\Upsilon_{s}^{2} - b_{s}^{2}} \right)$$

$$= 2 \times (36) + \pi \left(\frac{(35)}{2} \right) + (31) \left(\frac{(26)^{2}}{(26)^{2} - (22)^{2}} \right)$$

t					
(49)	ℓ_{t}	$\frac{1/2 \text{ MEAN TURN}}{\ell_t} = (\ell)$	The average les + (L _E) = (13) +		actor in inches
(50)	X _s °C	calculate	-	t which F.L. los	
(51)	$ ho_{ m s}$		If tables are ava en above, use T	NG - In micro oh ailable using unit able VI for conve	ts other than
		1 ohm-cm = 1 ohm-in = 1 ohm-cir mil/ft =	ohm-cm 1.000 2.540 1.662 x 10 ⁻⁷	ohm-in 0.3937 1.000 6.545 x 10 ⁻⁸	ohm-cir mil/ft 6.015 x 10 ⁶ 1.528 x 10 ⁷ 1.000
		Conversion	TABLE on Factors for E	VI lectrical Resisti	vity
(52)	(hot)	RESISTIVITY OF Stinches	TATOR WINDIN	NG - Hot at X _S OC	in micro ohm-
		$P_{S(hot)} = (P_S) \left[\frac{(X_S)^0}{2} \right]$	$\frac{\text{C)} + 234.5}{254.5} = (5)$	$(51) \boxed{\frac{(50) + 234.5}{254.5}}$	

1	İ	<u>,</u>
(53)	R _{SPH} (cold)	STATOR RESISTANCE/PHASE - Cold @ 20°C in ohms
	(cold)	$R_{SPH(cold)} = \frac{(\rho_s)(n_s)(Q)(l_t)x_0^{-l_t}}{(m)(a_c)(C)^2} = \frac{(51)(30)(23)(49)}{(5)(46)(32)^2} x_10^{-l_t}$
(54)	R _{SPH} (hot)	STATOR RESISTANCE/PHASE - Calculated @ XOC in ohms
	(not)	$R_{SPH(hot)} = \frac{(P_{s \text{ hot}})(n_{s})(Q)(\ell_{t}) \times 6^{4}}{(m)(a_{c})(C)^{2}} = \frac{(52)(30)(23)(49)}{(5)(46)(32)^{2}} \times 6^{4}$
(55)	EF (top)	EDDY FACTOR TOP - The eddy factor of the top coil.
	(** 12*)	Calculate this value at the expected operating temperature of the machine.
		perature of the machine.
		$EF_{top} = 1 + \left\{ .584 + \frac{N_{st}^2 - 1}{16} \left[\frac{h_{st} \ell}{h_{st} \ell} \right]^2 \right\} 3.35 \times 10^{-3}$
		$ \frac{\left[\frac{(h_{st})(n_s)(f)(a_c)}{(b_s)(P_{Shot})}\right]^2}{(b_s)(P_{Shot})} $
		$= 1 + \left\{ .584 + \frac{(34)^2 - 1}{16} \right] \frac{(38)(13)}{(37)(49)}^2 3.35 \times 10^{-3}$
(56)	EF (bot)	EDDY FACTOR BOTTOM - The eddy factor of the bottom coil at the expected operating temperature of the machine
		$EF_{(bot)} = (EF_{(top)}) - 1.677 \left[\frac{(h_{st})(n_{s})(f)(a_{c})}{(b_{s})(P_{S hot})} \right]^{2} \times 10^{-3}$

$$= (55) \qquad \frac{30}{22)(52} + \frac{16}{22} = 10^{-3}$$

$$= (57) \quad b_{tm} \qquad \frac{1}{20} - \frac{1}{20} = 1 - \frac{1}{2} \text{ way down tooth in inchessitype (a), (b), (d) and (e), Figure I}$$

$$= (\Upsilon_s) - (b_s) = (26) - (22)$$
For slot type (c), Figure I
$$b_{tm} = (\Upsilon_s) - (b_3) = (26) - (22)$$

$$= (57a) \quad b_{t1/3} \qquad \frac{\text{STATOR TOOTH WIDTH}}{\text{section}} - \frac{1}{3} \text{ distance up from narrowest}$$

$$= \text{section}$$
For slots type (a), (b) and (e)
$$= \frac{b_t}{1/3} = (\Upsilon_s, \frac{1}{3}) - (b_s) = (27) - (22)$$
For slot type (c)
$$= \frac{b_t}{1/3} = \frac{b_{tm}}{1/3} = \frac{(57)}{3} = \frac{b_t}{3} = \frac{(57)}{3} = \frac{($$

1	13
g	MAIN AIR GAP - given in inches
g 2	AUXILIARY AIR GAP (g2) - given in inches
g ₃	AUXILIARY AIR GAP (g ₃) - given in inches
C _X	REDUCTION FACTOR - Used in calculating conductor per- meance and is dependent on the pitch and dis-
	tribution factor. This factor can be obtained
	from Graph 1 with an assumed K _d of .955 or
	calculated as shown
	$C_{X} = \frac{(K_{X})}{(K_{P})^{2} (K_{d})^{2}} = \frac{(61)}{(44)^{2} (43)^{2}}$
$K_{\mathbf{X}}$	FACTOR TO ACCOUNT FOR DIFFERENCE in phase current
	in coil sides in same slot.
	For 60° phase belt winding, i.e. when (42a) = 60
	$K_X = 1/4 \left[\frac{3(y)}{(m)(q)} + 1 \right]$ where $2/3 \le (y)/(m)(q) \le 1.0$
	$K_X = 1/4 \left[\frac{3(31)}{(5)(25)} + 1 \right]$ where $2/3 = (31a) = 1.0$
	or $K_{X} = 1/4 \left[\frac{6(y)}{(m)(q)} - 1 \right]$ where $1/2 \le (31a) \le 2/3$
	$K_X = 1/4 \begin{bmatrix} 6(31) \\ (5)(25) \end{bmatrix} - 1$ where $1/2 = (31a) = 2/3$
	g ₂ g ₃ C _X

(62)

For
$$120^{\circ}$$
 phase belt winding, i.e. when $(42a) = 120$

$$K_X = .75 \text{ when } 2/3 = (y)/(m)(q)$$

$$K_X = .75 \text{ when } 2/3 \stackrel{<}{=} (31a)$$

or

$$K_X = .05 \left[\frac{24(y)}{(m)(q)} - 1 \right]$$
 where $1/2 \le \frac{(y)}{(m)(q)} \le 2/3$

$$K_X = .05 \left[\frac{24(31)}{(3)(25)} - 1 \right]$$
 where $1/2 \le (31a) \le 2/3$

CONDUCTOR PERMEANCE - The specific permeance for the portion of the stator current that is embedded in the iron. This permeance depends upon the configuration of the slot.

(a) For open slots

$$\lambda_{i} = (C_{X}) \frac{20}{(m)(q)} \left[\frac{(h_{2})}{(b_{s})^{+}} \frac{(h_{1})}{3(b_{s})} + \frac{(b_{t})^{2}}{16(\gamma_{s})(g)} + \frac{.35(b_{t})}{(\gamma_{s})} \right]$$

$$\lambda_{i} = (60) \frac{20}{(5)(25)} \left[\frac{(22)}{(22)} + \frac{(22)}{3(22)} + \frac{(58)^{2}}{16(26)(59)} + \frac{.35(58)}{(26)} \right]$$

(b) For partially closed slots with constant slot width

$$\gamma_{i} = (C_{X}) \frac{20}{(m)(q)} \left[\frac{(h_{o})}{(b_{o})} + \frac{2(h_{t})}{(b_{o}) + (b_{s})} + \frac{(h_{w})}{(b_{s})} + \frac{(h_{1})}{3(b_{s})} + \frac{(b_{t})^{2}}{16(\tau_{s})(g)} + \frac{.35(b_{t})}{(\tau_{s})} \right]$$

$$\lambda_{i} = (60) \frac{20}{(5)(25)} \left[\frac{(22)}{(22)} + \frac{2(22)}{(22) + (22)} + \frac{(22)}{(22)} + \frac{(22)}{3(22)} + \frac{(58)^{2}}{16(26)(59)} + \frac{.35(58)}{(26)} \right]$$

(c) For partially closed slots (tapered sides)

$$\gamma_{1} = (C_{X}) \frac{20}{(m)(q)} \left[\frac{(h_{0})}{(b_{0})} + \frac{2(h_{t})}{(b_{0}) + (b_{1})} + \frac{2(h_{w})}{(b_{1}) + (b_{2})} + \frac{(h_{1})}{3(b_{2})} + \frac{(b_{t})^{2}}{16(\gamma_{S})(g)} + \frac{35(b_{t})}{(\gamma_{S})} \right]$$

$$\lambda_{i} = (60) \frac{20}{(5)(25)} \left[\frac{(22)}{(22)} + \frac{2(22)}{(22) + (22)} + \frac{2(22)}{(22) + (22)} + \frac{(22)}{3(22)} + \frac{(58)^{2}}{16(26)(59)} + \frac{.35(58)}{(26)} \right]$$

(d) For round slots

$$\lambda_{i} = (C_{X}) \frac{20}{(m)(q)} \left[.62 + \frac{(h_{o})}{(b_{o})} \right]$$

$$\lambda_{i} = (60) \frac{20}{(5)(25)} \left[.62 + \frac{(22)}{(22)} \right]$$

(e) For open slots with a winding of one conductor per slot

$$\lambda_{i} = (C_{X}) \frac{20}{(m)(q)} \left[\frac{(h_{2})}{(b_{s})} + \frac{(h_{1})}{3(b_{s})} + .6 + \frac{(g)}{2(\gamma_{s})} + \frac{(\gamma_{s})}{4(g)} \right]$$

$$\lambda_{i} = (60) \frac{20}{(5)(25)} \left[\frac{(22)}{(22)} + \frac{(22)}{3(22)} + .6 + \frac{(59)}{2(26)} + \frac{(26)}{4(59)} \right]$$

K_E LEAKAGE REACTIVE FACTOR for end turn

(63)

(64)

$$K_E = \frac{\text{Calculated value } (L_E)}{\text{Value } (L_E) \text{ from Graph 1}}$$
 (For machines where (11)>8")

where L_E = (48) and abscisa of Graph 1 = (γ)(γ) = (31)(26)

$$K_E = \sqrt{\frac{\text{Calculated value of } (L_E)}{\text{Value } (L_E) \text{ from Graph 1}}}$$
 (For machines where (11)<8")

END WINDING PERMEANCE - The specific permeance for the end extension portion of the stator winding

$$\sum_{E} = \frac{6.28 (K_{E})}{(\ell)(K_{d})^{2}} \left[\frac{\phi_{E} L_{E}}{2n} \right] = \frac{6.28 (63)}{(13)(43)^{2}} \left[\frac{Q_{E} L_{E}}{2n} \right]$$
The term $\left[\frac{\phi_{E} L_{E}}{2n} \right]$ is obtained from Graph 1.

The symbols used in this (term) do not apply to those

of this design manual. Reference information for the symbol origin is included on Graph 1.

(65) -- WEIGHT OF COPPER - the weight of stator copper in lbs.

#'s copper = .321(n_S)(Q)(a_C)(
$$\ell_t$$
) = .321(30)(23)(46)(49)

WEIGHT OF STATOR IRON - in lbs.

#'s iron = .283 { (b_{tm})(Q)(ℓ_s)(h_S) + π (d) (h_C)(ℓ_s) }

= .283 { (57)(23)(17)(22) + π (10a) (24)(17) }

(67) K_S CARTER COEFFICIENT

$$K_S = \frac{(T_S) \left[5(g) + (b_S) \right]}{(T_S) \left[5(g) + (b_S) \right]} - (b_S)^2$$
 (For open slots)

$$K_S = \frac{(26) \left[5(59) + (22) \right]}{(28) \left[5(59) + (22) \right]} - (22)^2$$

$$K_S = \frac{(26) \left[4.44(g) + .75(b_O) \right]}{Y_S \left[4.44(g) + .75(b_O) \right]} - (b_O)^2$$

$$K_S = \frac{(26) \left[4.44(59) + .75(22) \right]}{(26) \left[4.44(59) + .75(22) \right]} - (22)^2$$

(68) A_g MAIN AIR GAP AREA - The area of the gap surface at the stator bore

$$A_g = \frac{\gamma_T}{4} \left[(O, D,)^2 - (I, D,)^2 \right] = \frac{\gamma_T}{4} \left[(12)^2 - (11)^2 \right]$$
(69) g_e EFFECTIVE AIR GAP (MAIN)

$$g_O = (K_S)(g) = (67)(59)$$

b	1	17
(70)	A _{g2}	AREA OF OUTER AUXILIARY AIR GAP (g ₂) - Calculate from layout. This gap must be uniform circumferentially with no saturated sections if parasitic losses in the gap surfaces are to be prevented.
(70a)	A _{g3}	AREA OF THE INNER AUXILIARY GAP (g ₃) - The same comment applies to g ₃ as to g ₂ above. Avoid discontinuity in the circumferential flux pattern.
(71)	c ₁	THE RATIO OF MAXIMUM FUNDAMENTAL of the field form.
(72)	C _W	For pole heads with only one radius, C_1 is obtained from Curve #4. The abscissa is "pole embrace" (∞) = (77). The graphical flux plotting method of determining C_1 is explained in the section titled "Derivations" in the Appendix. WINDING CONSTANT - The ratio of the RMS line voltage for a full pitched winding to that which would be introduced in all the conductors in series if the density were uniform and equal to the Maximum value.
		$C_{W} = \frac{(E)(C_{1})(K_{d})}{\sqrt{2}(E_{PH})(m)} = \frac{(3)(71)(43)}{\sqrt{2}(4)(5)}$
. ,		

Assuming K_d = .955, then C_W = .225 C_1 for three phase delta machines and C_W = .390 C_1 for three phase star machines.

(73) | C_P

POLE CONSTANT - The ratio of the average to the maximum value of the field form. Cp is obtained from Curve #4. Note the correction factor at the top of the curve.

 $(74) \mid C_{\mathbf{M}}$

DEMAGNETIZING FACTOR - direct axis.

$$C_{\mathbf{M}} = \frac{(\infty)\pi + \sin[(\infty)\pi]}{4\sin[(\infty)\pi/2]} = \frac{(77)\pi + \sin(77)}{4\sin[(77)\pi/2]}$$

(75) | C_q

CROSS MAGNETIZING FACTOR - quadrature axis

$$C_{q} = \frac{1/2 \cos \left[(\infty) \frac{\pi}{2} \right] + (\infty) \frac{\pi}{4 \sin \left[(\infty) \frac{\pi}{2} \right]}}{4 \sin \left[(\infty) \frac{\pi}{2} \right]} \begin{cases} \text{valid for concentric poles.} \\ = \frac{1/2 \cos \left[(77) \frac{\pi}{2} \right] + (77) \frac{\pi}{2} - \sin \left[(77) \frac{\pi}{2} \right]}{4 \sin \left[(77) \frac{\pi}{2} \right]} \end{cases}$$

 C_{Q} can also be obtained from Curve 9.

(76) --

POLE DIMENSIONS LOCATIONS per Figure 2 b

- b_{p1} = minimum width of pole (usually at tip) measured at the edge of the stator toroid.
- b_{p2} = maximum width of pole (usually at entering edge) at edge of stator toroid.

bp = average width of pole

$$b_{p} = \frac{b_{p1} + b_{p2}}{2}$$

(79)	A _{po}	AREA OF POLE AT ENTERING EDGE OF STATOR TOROID (outer pole) - Obtain from layout.
(79a)	A _{pi}	AREA OF POLE AT ENTERING EDGE OF STATOR TOROID (inner pole) - Obtain from layout.

UNIFORM POLE WIDTH FIGURE Za

FIGURE 26

F143

F14 4

1			
	(80)	P ₁	POLE TIP TO ROTOR LEAKAGE PERMEANCE - Add the
			leakage permeance from the inside pole to the
			outer flux ring and the outside pole to the shaft
			section. PER FIG 5
			$P_1 = \left[\frac{\mathcal{U}_{a_1}}{\ell_1} + \frac{\mathcal{U}_{a_1'}}{\ell_1'} \right] \left[\frac{P}{2} \right]$
	(81)	P ₂	SIDE LEAKAGE FROM POLE-TO-POLE
			$P_2 = \frac{4a}{R}$ PER FIG 5
			a = area of leakage path between poles x poles
			<pre></pre>
	(82)	P ₃	LEAKAGE PERMEANCE FROM UNDERSIDE OF POLE TO
			ROTOR.
			Add the leakage permeance from inner pole to outer
			flux ring and from outer pole to shaft. Multiply this
			sum by $\frac{P}{2}$ PER FIG 6 7
			$P_3 = \begin{bmatrix} \frac{\sqrt{a_3}}{2} & \frac{\sqrt{a'_3}}{2} \end{bmatrix} \frac{P}{Z}$

Fig 5

F16 6

Fig 7

(83) P₄

LEAKAGE PERMEANCE FROM UNDERSIDE OF POLE

TO UNDERSIDE OF POLE -

$$P_4 = \left[\frac{u_{4}}{l_4}\right](P) \qquad PER FIG 8$$

LEAKAGE FLUX FROM UNDERSIDE OF POLE, OF

F14 8

$\underline{\mathbf{PL}}$
es
es
GE
06 0(17)
AND OUTER
$(F_{pi}) \times 10^{-3}$ $(104b) \times 10^{-3}$
$104b)$ x 10^{-3}
<u>.</u>

(91)	Bt	TOOTH DENSITY in Kilolines/in 2 - The flux density in the
		stator tooth at $1/3$ of the distance from the minimum
		section.
		$B_{t} = \frac{\emptyset_{T}}{(Q)(I_{S})(b_{t} 1/3)} = \frac{(88)}{(23)(17)(57a)}$
(92)	$\phi_{\mathbf{P}}$	FLUX PER POLE in Kilolines
(94)	Вс	CORE DENSITY in Kilolines/in ² - The flux density in the stator core
		$B_{C} = \frac{(Q_{P})}{2(h_{C})(Q_{S})} = \frac{(92)}{2(24)(17)}$
(95)	$\mathrm{B}_{\mathbf{g}}$	$\underline{GAP}\ \mathtt{DENSITY}\ \mathtt{in}\ \mathtt{Kilolines/in^2}$ - The maximum flux density
		in the air gap
		$B_g = \frac{(\phi_T)}{(A_{cr})} = \frac{(88)}{(68)}$
		(68)
(96)	$\mathbf{F}_{\mathbf{g}}$	AIR GAP AMPERE TURNS - The field ampere turns per pole
		required to force flux across the air gap when oper-
		ating at no load with rated voltage.
		$F_g = \frac{(B_g)(g_e)}{3.19} r^{10^{\frac{3}{2}}} \frac{(95)(69)}{3.19} x^{10^{\frac{3}{2}}}$
•		•

1		
(97)	$\mathbf{F_{T}}$	STATOR TOOTH AMPERE TURNS
:		$F_T = (h_s) \left[NI/inch at density (B_t) \right]$
		= (22) look up on stator magnetization curve given in (18) at density (91)
(98)	$\mathbf{F_c}$	STATOR CORE AMPERE TURNS
		$F_c = \frac{\pi(d)}{4(P)}$ [NI/inch at density (B c)]
		$F_{c} = \frac{\% (10a)}{4(6)}$ Look up on stator magnetization curve at density (94)
(100)	Ø	LEAKAGE FLUX - at no load
		$\phi_{\chi} = [(P_1) + (P_2) + (P_3) + (P_4)] [2(F_T) + 2(F_C) + (F_{g2}) + (F_{g3})] \times 10^{-3}$
		$= \left[(80)+(81)+(82)+(83) \right] \left[2(97)+2(98)+(123)+(120) \right] \times 10^{-3}$
(102)	$\phi_{ m pt}$	TOTAL FLUX PER POLE - at no load
		$Q_{\text{pt}} = Q_{\text{p}} + \frac{Q_{\text{g}}}{P} = (92) + \frac{(100)}{(6)}$
(103)	B _{po}	FLUX DENSITY IN OUTER POLE (NL)
		$B_{po} = \frac{(Q_{pt})}{(a_{po})} = \frac{(102)}{(79)}$

١			
	(104)	F_{po}	AMPERE TURN DROP THROUGH OUTER POLE @ N. L.
			$F_{po} = (l_{po})$ NI/inch at density (B_{po})
			= (104) Look up on pole magnetization curve at density (103).
			Where $m{\ell}_{po}$ = length of outer pole.
	(104a)	B_{pi}	FLUX DENSITY IN INNER POLE @ N. L.
			$B_{pi} = \frac{Q_{pt}}{A_{pi}} = \frac{(102)}{(79a)}$
	(104b)	$\mathtt{F}_{\mathtt{pi}}$	AMPERE TURN DROP THROUGH THE INNER POLE @ N.L
			F _{pi} = (I _{pi}) [NI/inch at density (B _{pi})]
			= (104b) Look up on pole magnetization curve at density (104a)
			Where (\mathbf{l}_{pi}) = length of inner pole
	(104c)	$\phi_{\mathbf{r}}$	FLUX IN ROTATING OUTER FLUX RING AT NO LOAD
			$Q_r = Q_{g2} = Q_{g3} = Q_{sh}$
			= (108) = (118a) = (111)
i			

	(104d)	$oxed{B_{\mathbf{r}}}$	FLUX DENSITY IN ROTATING OUTER RING at no load
			$B_{r} = \frac{(Q_{r})}{(A_{r})} = \frac{(104c)}{(104d)}$
			Where A_r = ring cross-section area adjacent to the outer pole (P_0)
	(104e)	$\mathbf{F_r}$	AMPERE TURN DROP IN RING at no load.
			$F_r = (l_r) \left[NI/inch \text{ at density } (B_r) \right]$
			= (104e) Look up on ring magnetization curve at density (104d)
			Where Q_4 = length of ring
	(108)	$arphi_{ m g2}$	FLUX IN AUXILIARY GAP at no load
			$\varphi_{g2} = \varphi_{g3} = \varphi_{r} = \varphi_{sh} = \varphi_{pt} \frac{(P)}{2} + \varphi_{7}$
			$= 102 \frac{(6)}{2} + (89)$
	(111)	$arphi_{ m sh}$	FLUX IN SHAFT at no load
			= (108) = (104c) = (118a)

(112)	A _{sh}	AREA OF SHAFT (cross-sectional to flux)
(113)	B_{sh}	FLUX DENSITY IN SHAFT at no load
	,	$B_{sh} = \frac{Q_{sh}}{A_{sh}} = \frac{(111)}{(112)}$
(114)	$\mathbf{F_{sh}}$	AMPERE TURN DROP IN SHAFT at no load
		$F_{sh} = Q_{sh} \left[NI/inch at density (P_{sh}) \right]$
		= (114) Look up on shaft magnetization curve
		= (114) Look up on shaft magnetization curve at density (113)
		Where l_{sh} = effective length of shaft
(118)	Q 5	LEAKAGE FLUX ACROSS THE FIELD COIL in Kilolines
		$\phi_{15} = (P_5) \left[(F_{g2}) + (F_{g3}) + 2(F_t) + 2(F_c) + (F_{po}) \right]$
		$+(F_{pi})+(F_r)+(F_{sh})$ x 10^{-3}
		= (84) (123)+(120)+2(97)+2(98)+(104)
		$+(104b)+(104e)+(114)$ x 10^{-3}
(118a)	$ec{arphi}_{ m g3}$	FLUX IN AUXILIARY GAP g ₃
(119)	$oxed{\mathbf{B_{g3}}}$	FLUX DENSITY IN AUXILIARY GAP g3
		$B_{g3} = \frac{(Q_{g3})}{(A_{g3})} = \frac{(118a)}{(70a)}$

(120)	F _{g3}	AMPERE TURN DROP ACROSS THE AUXILIARY AIR GAP g ₃
		$F_{g3} = \frac{(B_{g3})}{3.19} (g_3) \times 10^3 = \frac{(119)}{3.19} (59c) \times 10^3$
(122)	B _{g2}	FLUX DENSITY IN AUXILIARY AIR GAP $B_{g2} = \frac{(Q_{g2})}{(A_{\sigma2})} = \frac{(108)}{(70)}$
(123)	${ t F_{g2}}$	AMPERE TURN DROP ACROSS AUXILIARY GAP (g ₂)
		$F_{g2} = \frac{(B_{g2})(g_2)}{3.19} \times 10^3 = \frac{(122)(59a)}{3.19} \times 10^3$
(126a)	ø _y	FLUX IN YOKE YOKE DENSITY
(126b)	Ву	YOKE DENSITY
		$B_y = \frac{(0/y)}{(A_y)} = \frac{(126a)}{(126b)}$
		Where a _y = yoke cross-sectional area
(126c)	Fy	AMPERE TURN DROP IN YOKE at no load $F_{y} = x_{y} \left[\text{NI/inch at density } (B_{y}) \right]$
:		= (126c) Look up on yoke magnetization curve at density (126b)
		Where & y = length of yoke

	Ĭ	1
(127)	F _{NL}	TOTAL AMPERE TURNS at no load
		$F_{NL} = \left[2(F_c) + 2(F_T) + (F_{po}) + (F_{pi}) + (F_r) + (F_{sh}) + (F_{g2}) + (F_{g3}) + (F_y)\right]$
		= 2(98)+2(97)+(104)+(104b)+(104e)+(114)+(123)+(120)+(126c)
(127a)	I _{FNL}	FIELD CURRENT - at no load
		$I_{FNL} = (F_{NL})/(N_F) = 127)/(146)$
(127b)	${ t E_{ t FNL}}$	FIELD VOLTS - at no load. This calculation is made
		with cold field resistance at 20°C for no load
		condition.
		$E_{F} = (I_{FNL})(R_{f cold}) = (127a)(154)$
(127c)	$s_{\mathbf{F}}$	CURRENT DENSITY - at no load. Amperes per square inch
		of field conductor.
		$S_{F} = (I_{FNL})/(a_{cf}) = (127)/(153)$
(128)	A	AMPERE CONDUCTORS per inch - The effective ampere
		conductors per inch of stator periphery. This
		factor indicates the "specific loading" of the
		machine. Its value will increase with the rat-
		ing and size of the machine and also will in-
		crease with the number of poles. It will decrease
		with increases in voltage or frequency. A is
		generally higher in single phase machines than
		in polyphase ones.
1		A = $\frac{(I_{PH})(n_S)(K_P)}{(C)(\gamma_S)}$ = $\frac{(8)(30)(44)}{(32)(26)}$

(129) X

REACTANCE FACTOR - The reactance factor is the quantity by which the specific permeance must be multiplied to give percent reactance. It is the percent reactance for unit specific permeance, or the percent of normal voltage induced by a fundamental flux per pole per inch numerically equal to the fundamental armature ampere turns at rated current. Specific permeance is defined as the average flux per pole per inch of core length produced by unit ampere turns per pole.

$$X = \frac{100(A)(K_d)}{\sqrt{2} (C_1)(B_g) \times 10^3} = \frac{100 (128)(43)}{\sqrt{2} (71) (95) \times 10^3}$$

LEAKAGE REACTANCE - The leakage reactance of the stator for steady state conditions. When (5) = 3, calculate as follows:

$$X_{\ell} = X[(\lambda_i) + (\lambda_E)] = (79)[(62) + (64)]$$

In the case of two phase machines a component due to belt leakage must be included in the stator leakage. reactance. This component is due to the harmonics caused by the concentration of the MMF into a small number of phase belts per pole and is negligible for three phase machines. When (5) = 2, calculate as follows:

$$\lambda_{\rm B} = \frac{0.1(d)}{({\rm P})({\rm g}_{\rm e})} \left[\frac{\sin \left[\frac{3({\rm y})}{({\rm m})({\rm q})} \right] 90^{\rm o}}{({\rm K}_{\rm P})} \right] = \frac{0.1(11)}{(6)(69)} \left[\frac{\sin \left[\frac{3(31)}{(5)(25)} \right] 90^{\rm o}}{(44)} \right]$$

 $X_{\ell} = X[(\lambda_i) + (\lambda_E) + (\lambda_B)]$ where $\lambda_B = 0$ for 3 phase machines.

$$X_{\ell} = (79)[(62) + (64) + (80)]$$

(130)

 $\mathbf{x}_{\mathbf{\ell}}$

(131)	X _{ad}	REACTANCE - direct axis - This is the fictitious reactance due to armature reaction in the direct axis.
		$X_{ad} = (X)(\lambda_a)(C_1)(C_M) = (129)(70)(71)(74)$
(132)	x_{aq}	REACTANCE - quadrature axis - This is the fictitious reactance due to armature reaction in the quad. axis.
		$X_{aq} = (X)(C_q)(\lambda_a) = (129)(75)(70)$
(133)	x _d	SYNCHRONOUS REACTANCE - direct axis - The steady state short circuit reactance in the direct axis.
		$X_d = (X_{\ell}) + (X_{ad}) = (130) + (131)$
(134)	Хq	SYNCHRONOUS REACTANCE - quadrature axis - The steady state short circuit reactance in the quadrature axis.
		$X_q = (X_{\ell}) + (X_{aq}) = (130) + (132)$
(145)	v_r	PERIPHERAL SPEED - The velocity of the rotor surface in feet per minute
		$V_{r} = \frac{\gamma_{r}(d_{r})(RPM)}{12} = \frac{\gamma_{r}(lla)(7)}{12}$
(146)	$N_{\mathbf{F}}$	NUMBER OF FIELD TURNS
(147)	L tF	MEAN LENGTH OF FIELD TURN
(148)		FIELD CONDUCTOR DIA OR WIDTH in inches
(149)		FIELD CONDUCTOR THICKNESS in inches - Set this item = 0. for round conductor.

1		1	
(1	150)	x _f °C	FIELD TEMP IN OC - Input temp at which full load field loss is to be calculated.
(1	151)	$ ho_{ m f}$	RESISTIVITY of field conductor @ 20°C in micro ohm-inches. Refer to table given in item (51) for conversion factors.
(1	152)	P _f (hot)	RESISTIVITY of field conductor at X_f^{OC} $ \int_{f}^{\infty} f(hot) = \int_{f}^{\infty} \left[\frac{(X_f^{OC}) + 234.5}{254.5} \right] = (104) \left[\frac{(150) + 234.5}{254.5} \right] $
(1	153)	a _{cf}	CONDUCTOR AREA OF FIELD WINDING - Calculate same as stator conductor area (46) except substitute (149) for (39) (148) for (33)
(1	154)	Rf (cold)	COLD FIELD RESISTANCE @ 20°C $R_{f \text{ (cold)}} = (P_{f}) \frac{(N_{f}) (I_{tf})}{(a_{cf})} = (151) \frac{(146) (147)}{(153)}$
(1	(55)	R _f (hot)	HOT FIELD RESISTANCE - Calculated at X_f^{OC} (103) $R_f \text{ (hot)} = (\bigwedge_{f \text{ hot}}) \frac{(N_f) (l_{tf})}{(a_{cf})} = (152) \frac{(146) (147)}{(153)}$
(1	.56)		WEIGHT OF FIELD COIL in lbs. #'s of copper = $.321(N_f)(t_{tf})(a_{cf})$
			= .321(146)(6)(147)(153)

ı	1	
(157)		WEIGHT OF ROTOR IRON - Because of the large number of
		different pole shapes, one standard formula cannot
		be used for calculating rotor iron weight. Therefore
		the computer will not calculate rotor iron weight.
		The space is allowed on the input sheet for record
		purposes only. By inserting 0. in the space allowed
		for rotor iron weight, the computer will show "0".
		on the output sheet. If the rotor iron weight is avail
		able and inserted on input sheet, then the output shee
		will show this same weight on the output sheet.
(160)	$x_{\mathbf{F}}$	FIELD LEAKAGE REACTANCE
		$X_{F} = (X_{ad}) \left[1 - \frac{\left[(C_{1})/(C_{m}) \right]}{2(C_{p}) + \frac{4(\lambda F)}{\pi (\lambda a)}} \right]$
		$= (81) \left[1 - \frac{[(71)/(74)]}{2(73) + \frac{4(160c)}{7(70)}} \right]$
(160a)	$\mathbf{p_e}$	ROTOR LEAKAGE PERMEANCE
		$P_e = P \left[P_1 + P_2 + P_3 + P_4 \right] + P_5$
	-	= (6) [(80) + (81) + (82) + (83)] + (84)
(160c)	λF	ROTOR LEAKAGE PERMEANCE per inch of stator stack
		$\lambda F = \frac{P_e}{P} = \frac{(160a)}{(13)}$
(161)	$\mathbf{L_{f}}$	FIELD SELF INDUCTANCE
		$L_{f} = (N_{f})^{2} \mathcal{L}_{p} \left[(C_{p})(\lambda_{a}) \frac{\mathcal{T}}{2} + (\lambda_{f}) \right] \times 10^{-8}$
		= $(99)^2$ (76) $\left[(73)(70) \frac{\%}{2} + (160 c) \right] \times 10^{-8}$

(166)	x' _{du}	UNSA TED TRANSIENT REACTANCE
		$X'_{du} = (X_f) + (X_f) = (130) + (160)$
(167)	x' _d	SATURATED TRANSIENT REACTANCE
		$x'_d = .88(x'_{du}) = .88(166)$
(168)	x'' _d	SUBTRANSIENT REACTANCE in direct axis
		$X''_{d} = (X'_{d}) = (167)$
(169)	x'' _q	SUBTRANSIENT REACTANCE in quadrature axis
		$X''_{q} = (X_{q}) = (134)$
(170)	x ₂	NEGATIVE SEQUENCE REACTANCE - The reactance due to
		the field which rotates at synchronous speed in a
		direction opposite to that of the rotor.
		$X_2 = .5 \left[X''_d + X''_q \right] = .5 \left[(168) + (169) \right]$
(172)	$\mathbf{x_0}$	ZERO SEQUENCE REACTANCE - The reactance drop across
		any one phase (star connected) for unit current in each
		of the phases. The machine must be star connected
		for otherwise no zero sequence current can flow and
		the term then has no significance.
		If $(28) = 0$, then $X_0 = 0$
		If $(28) \neq 0$, then

$$X_{O} = X \begin{cases} (K_{XO}) \\ (K_{X}I) \end{cases} \left[(\lambda_{1}) + (\lambda_{BO}) \right] + \frac{1.667}{(m)(q)(K_{D})^{2}(K_{d})^{2}(b_{S})} + .2(\lambda_{E}) \\ = (79) \begin{cases} \frac{(173)}{(174)} \left[(62) + (123c) \right] + \frac{1.667}{(5)(25)(44)^{2}(43)^{2}(22)} + .2 \end{cases}$$

$$(173) \quad K_{XO} \qquad \text{If } (30) = 1 \qquad \text{Then } K_{XO} = 1 \\ \text{If } (30) \neq 1 \qquad \text{Then } K_{XO} = \frac{3(Y)}{(m)(q)} - 2 \\ = \frac{3(31)}{(5)(25)} - 2 \end{cases}$$

$$(174) \quad K_{XI} \qquad \text{If } (30) = 1 \qquad \text{Then } K_{XI} = 1 \\ \text{If } (30) \neq 1 \qquad \text{Then:} \end{cases}$$

$$K_{XI} = \begin{bmatrix} \frac{3(Y)}{4(m)(q)} + \frac{1}{4} \end{bmatrix} = \begin{bmatrix} \frac{3(31)}{4(5)(25)} + \frac{1}{4} \end{bmatrix} \qquad \text{If } (31a) \geq .667$$

$$K_{XI} = \begin{bmatrix} \frac{3(Y)}{4(m)(q)} - \frac{1}{4} \end{bmatrix} = \begin{bmatrix} \frac{3(31)}{4(5)(25)} - \frac{1}{4} \end{bmatrix} \qquad \text{If } (31a) \leq .667$$

$$(175) \quad \lambda_{BO} \qquad \lambda_{BO} = \frac{(K_{XO})}{(K_{D})^{2}} \begin{bmatrix} 07(\lambda_{2}) \end{bmatrix} = \frac{(173)}{(44)^{2}} \begin{bmatrix} .07(70) \end{bmatrix}$$

$$(176) \quad T'_{dO} \qquad \frac{OPEN \ CIRCUIT \ TIME \ CONSTANT}{(K_{D})^{2}} = \frac{(161)}{(45)(25)} = \frac{1}{4}$$

$$(176) \quad T'_{dO} = \frac{L_{F}}{R_{F}} = \frac{(161)}{(154)}$$

(177) T _a ARMATURE TIME CONSTANT - Time constant of the D component. In this calculation stator resistance	.C.
i (itt) i is a minimal of the company of the p	
component. In this calculation stator resistanc	
room temperature (20°C) is used.	e ai
room temperature (20 C) is used.	
$\Gamma_a = \frac{X_2}{200\pi - (f)(r_a)} = \frac{(170)}{200\pi (5a)(177)}$	
Where $r_a = \frac{(m)(I_{PH})^2(R_{SPH cold})}{Rated KVA \times 10^3} = \frac{(5)(8)^2(53)}{(2) \times 10^3}$	
(178) T'd TRANSIENT TIME CONSTANT - The time constant of the transient reactance component of the alternating	ne
transient reactance component of the alternating	5
wave.	
$T'_{d} = \frac{(X'_{d})}{(X_{d})} (T'_{do}) = \frac{(167)}{(133)} (176)$	
(179) T'd SUBTRANSIENT TIME CONSTANT - The time constant subtransient component of the alternating wave.	of the
subtransient component of the alternating wave.	
This value has been determined empirically from	m
tests on large machines. Use following values	:
T'' _d = .035 second at 60 cycle	
$T''_d = .005$ second at 400 cycle	
(180) FSC SHORT CIRCUIT AMPERE TURNS - The field ampere t	urns
required to circulate rated stator current when	the
stator is short circuited.	
$F_{SC} = (X_d)(F_g) = (133)(96)$	

	(181)	SCR	SHORT CIRCUIT RATIO - The ratio of the field current to
			produce rated voltage on open circuit to the field
			current required to produce rated current on short
			circuit. Since the voltage regulation depends on the
			leakage reactance and the armature reaction, it is
			closely related to the current which the machine pro-
			duces under short circuit conditions and, therefore,
!			is directly related to the SCR.
			$SCR = (F_{NL})/(F_{SC}) = (127)/(180)$
	(182)	$ m I^2R_F$	FIELD I ² R - at no load. The copper loss in the field winding
			is calculated with cold field resistance at 20°C for
			no load condition.
			Field $I^2R = (I_{FNL})^2 (R_{f cold}) = (127a)^2 (154)$
:	(183)	F&W	FRICTION & WINDAGE LOSS - The best results are obtained
			by using existing data. For ratioing purposes, the
			loss can be assumed to vary approximately as the $5/2$
			power of the rotor diameter and as the $3/2$ power of
			the RPM. When no existing data is available, the
			following calculation can be used for an approximate
			answer. Insert 0. when computer is to calculate
			F&W. Insert actual F&W when available. Use same
			value for all load conditions.
			$F\&W = 2.52 \times 10^{-6} (d_r)^{2.5} (l_p) (RPM)^{1.5}$
			= $2.52 \times 10^{-6} (11a)^{2.5} (76) (7)^{1.5}$
	3	•	

1	•	45
(184)	W _{TNL}	STATOR TEETH LOSS - at no load. The no load loss (W _{TNL}) consists of eddy current and hysteresis losses in the iron. For a given frequency the no load tooth loss will vary as the square of the flux density. W _{TNL} = .453(b _t 1/3)(Q)(/ _S)(h _S)(K _Q)
(185)	w _c	$= .453(57a)(23)(17)(22)(184)$ Where $K_Q = (k) \left[\frac{(B_t)}{(B)}\right]^2 = (19) \left[\frac{(91)}{(20)}\right]^2$ STATOR CORE LOSS - The stator core losses are due to eddy currents and hysteresis and do not change under load conditions. For a given frequency the core loss will vary as the square of the flux density (B_c) .
(186)	$w_{ m NPL}$	$W_{C} = 1.42 \left[(D) - (h_{C}) \right] (h_{C})(p_{S})(K_{Q})$ $= 1.42 \left[(12) - (24) \right] (24)(17)(185)$ $Where K_{Q} = (k) \left[\frac{(B_{C})}{(B)} \right]^{2} = (19) \left[\frac{(94)}{(20)} \right]^{2}$ $POLE FACE LOSS - at no load. The pole surface losses are due to slot ripple caused by the stator slots. They depend upon the width of the stator slot opening, the air gap, and the stator slot ripple frequency. The no load pole face loss (Wpnl) can be obtained from Graph 2. Graph 2 is plotted on the bases of open$

slots. In order to apply this curve to partially open slots, substitute b₀ for b_s. For a better understanding of Graph 2, use the following sample:

 K_1 is given a Graph 2 is derived empirically and depends on lami. On material and thickness. Those values given on Graph 2 have been used with success K_1 is an input and must be specified. See Item (187) for values of K_1 .

 K_2 is shown as being plotted as a function of $(B_G)^{2.5}$. Also note that upper scale is to be used. Another note in the lower right hand corner of graph indicates that for a solid line (______), the factor is read from the left scale, and for a broken or dashed line (______), the right scale should be read. For example, find K_2 when $B_G = 30$ kilolines. First locate 30 on upper scale. Read down to the intersection of solid line plot of $K_2 = f(B_G)^{2.5}$. At this intersection read the left scale for K_2 . $K_2 = .28$. Also refer to Item (188) for K_2 calculations.

 K_3 is shown as a solid line plot as a function of $(F_{\rm SLT})^{1.65}$. The note on this plot indicates that the upper scale X 10 should be used. Note $F_{\rm SLT}$ = slot frequency. For an example, find K_3 when $F_{\rm SLT}$ = 1000. Use upper scale X 10 to locate 1000. Read down to intersection of solid line plot of K_3 = $f(F_{\rm SLT})^{1.65}$. At this intersection read the left scale

for K_3 . $K_3 = 1.35$. Also refer to Item (189) for K_3 calculations.

For K_4 use same procedure as outlined above except use lower scale. Do not confuse the dashed line in this plot with the note to use the right scale. The note does not apply in this case. Read left scale. Also refer to Item (190) for K_4 calculations.

For K_5 use bottom scale and substitute b_0 for b_S when using partially closed slot. Read left scale when using solid plot. Use right scale when using dashed plot. Also refer to Item (191) for K_5 calculations.

For K_6 use the scale attached for C_1 and read K_6 from left scale. Also refer to Item (192) for K_6 calculations.

The above factors (K_2) , (K_3) , (K_4) , (K_5) , (K_6) can also be calculated as shown in (188), (189), (190), (191), (192) respectively.

 $W_{PNL} = \mathcal{N}(d)(\mathcal{N}(K_1)(K_2)(K_3)(K_4)(K_5)(K_6)$ $= \mathcal{N}(11)(13)(187)(188)(189)(180)(199)(192)$

 K_l is derived empirically and depends on lamination material and thickness. The values used successfully for K_l are shown on Graph 2. They are:

 $(187) \mid K_1$

		K_l = 1.17 for .028 lam thickness, low carbon steel
:		= 1.75 for .063 lam thickness, low carbon steel
		= 3.5 for .125 lam thickness, low carbon steel
		= 7.0 for solid core
		$ extsf{K}_{ extsf{I}}$ is an input and must be specified on input sheet.
(188)	K ₂	K ₂ can be obtained from Graph 2 (see Item 186 for explana-
,		tion of Graph 2) or it can be calculated as follows:
		$K_2 = f(B_G) = 6.1 \times 10^{-5} (B_G)^2 \cdot 5$
		= $6.1 \times 10^{-5} (95)^{2.5}$
(189)	K_3	K ₃ can be obtained from Graph 2 (see Item 186 for explana-
		tion of Graph 2) or it can be calculated as follows:
		$K_3 = f(F_{SLT}) = 1.5147 \times 10^{-5} (F_{SLT})^{1.65}$
		= $1.5147 \times 10^{-5} (189)^{1.65}$
		Where $F_{SLT} = \frac{(RPN)}{60}$ 'Q)
		$=\frac{(7)}{60}$ (23)
(190)	К4	K ₄ can be obtained from Graph 2 (see Item 186 for explana-
		tion of Graph 2) or it can be calculated as follows:
		For $\gamma_s \leq .9$
		$K_4 = f(\gamma_s) = .81(\gamma_s)^{1.285}$
		$= .81(26)^{1.285}$

For
$$.9 \le \tau_S \le 2.0$$

 $K_4 = f(\tau_S) = .79(\tau_S)^{1.145}$
 $= .79(26)^{1.145}$
For $\tau_S > 2.0$

$$K_4 = f(\gamma_S) = .92(\gamma_S)^{.79}$$

= .92(26).79

(191)

 K_5

 K_5 can be obtained from Graph 2 (see item 186 for explanation of Graph 2) or it can be calculated as follows: For $(b_s)/(g) = 1.7$

$$K_5 = f(b_S/g) = .3 [(b_S)/(g)]^{2.31}$$

= .3 [(22)/(59)] 2.31

NOTE: For partially open slots substitute $b_{\rm O}$ for $b_{\rm S}$ in equations shown.

For
$$1.7 < (b_S)/(g) = 3$$

 $K_5 = f(b_S)/(g) = .35 [(b_S)/(g)]^2$
 $= .35 [(22)/(59)]^2$
For $3 < (b_S)/(g) \le 5$
 $K_5 = f(b_S)/(g) = .625 [(b_S)/(g)]^{1.4}$
 $= .625 [(22)/(59)]^{1.4}$

(196)

For
$$(b_S)/(g) > 5$$

$$K_5 = f (b_S) / (g) = 1.38 [(b_S) / (g)] \cdot 965$$

= 1.38 [(22)/(59)] \cdot 965

$$K_6 = f(C_1) = 10 \left[.9323(C_1) - 1.60596\right]$$

= 10 \left[.9323(71) - 1.60596\right]

(194)
$$I^2R$$
 STATOR I^2R - at no load. This iten. 0. Refer to Item (245) for 100% load stator I^2R .

TOTAL LOSSES - at no load. Sum of all losses.

Total losses = (Field
$$I^2R$$
) + (F&W) + (Stator Teeth Loss)
+ (Stator Core Loss) + (Pole Face Loss)

= (182) + (183) + (184) + (185) + (186)

NOTE: The output sheet shows the next items to be:

(Rating), (Rating + Losses), (% Losses),

(% Efficiency). These items do not apply to
the no load calculation since the rating is
zero. Refer to Items (175), (176), (177), (178)
for these calculations under load.

The no load calculations should all be repeated now for 100% load.

(1060)	ا م	ROTOR SILLY DED DOLE -4 1000/ 1 1
(190a)	Ψ Q 2	COVER LICE AT 100% 10ad
		LEAKAGE FLUX PER POLE at 100% load $ \emptyset \ell \ell = \emptyset \ell \left\{ \frac{(e_d)(F_g) + [1 + \cos(\theta)](F_T) + (F_C)}{(F_g) + (F_T) + (F_C)} \right\} $
		$= (100) \left\{ \frac{(198)(96) + \left[1 + \cos(198a)\right](97) + (98)}{(96) + (97) + (98)} \right\}$
(198)	e _d	Where $e_d = \cos(+ (X_d)) \sin \Psi$
		= cos (198a) + (83) sin (198b)
(198a)	0	Where $\theta = \cos^{-1} \left[(Power Factor) \right]$
		$= \cos^{-1} \left[(9) \right]$
		Where $\Upsilon = \tan^{-1} \left[\frac{\sin (\theta) + (X_q) / (100)}{\cos (\theta)} \right]$
		$= \tan^{-1} \left[\frac{\sin (198a) + (134) / (100)}{\cos (198a)} \right]$
		Where $\xi = \Psi - \theta = (198a) - (198a)$
(207)	$arphi_{7 ext{L}}$	STATOR TO ROTOR FLUX LEAKAGE at full load
		$ \overline{\varphi_{7L}} = \underline{P_7} \left[2(F_c) + 2(F_T) \left[1 + \cos(\theta) \right] + (F_{g2L}) + (F_{g3L}) + (F_{p0L}) + (F_{piL}) \right] \times 10^{-3} $
		= (86) $[2(98)+2(97)[(1+\cos(198a)] + (225)+(231)+(222a)+(222c)] \times 10^{-3}$
(213)	ϕ_{PL}	
		For P.F. 0 to .95
		FLUX PER POLE at 100% load For P.F. 0 to .95 $ \emptyset_{PL} = (\emptyset_P) \left[(e_d) - \frac{.93(X_{ad})}{100} \sin (\Psi) \right] $
		$= (92) \left[(198a) - \frac{.93(131)}{100} \sin (198a) \right]$

For P. F. . .95 to 1.0

$$Q_{PL} = (Q_P)(K_Q) = (126)(9a)$$

(213a)

 $Q_{PTL} = Q_{PL} + \frac{Q_{PL}}{P} = (213) + \frac{(196a)}{(6)}$

(221)

 $Q_{g2L} = Q_{g2L} = (Q_{g3L}) = (Q_{rL}) = (Q_{shL}) = (Q_{pL}) + \frac{P}{2} + (Q_{rL}) = (213) + \frac{P}{2} + (Q_{rL}) = (Q_{rL$

	53
FpiL	AMPERE TURN DROP THROUGH INNER POLE at full load
	$F_{pil} = l_{pi} \left[NI/inch \text{ at density } (B_{pil}) \right]$
	= (104b) Look up on pole magnetization curve at density (222b)
$B_{\mathbf{rL}}$	FLUX DENSITY IN ROTATING OUTER RING at no load
	$B_{rL} = \frac{Q_{rL}}{A_r} = \frac{(221)}{(104d)}$
$\mathbf{F_{rL}}$	AMPERE TURN DROP IN RING at full load
	$F_{rL} = (\mathbf{Q}_r)$ [NI/inch at density (B _r)]
	= (104e) Look up on ring magnetization curve at density (222d)
	density (222d)
$\mathrm{B_{g2L}}$	FLUX DENSITY IN AUXILIARY GAP under load
	$B_{g2L} = \frac{Q_{g2L}}{A_{g2}} = \frac{(221)}{(70)}$
$\mathbf{F_{g2L}}$	AMPERE TURN DROP IN AUXILIARY GAP (g2)
	$F_{g2L} = \frac{(B_{g2L})}{3.19} (g_2) \times 10^3$
	$= \frac{(224)}{3.19} (59a) x 10^3$
	B _{rL} F _{rL}

(226)
$$O_{5L}$$
 LEAKAGE ACROSS FIELD COIL $O_{5L} = P_5 \left[2(F_c) + 2(F_T) \left[1 + \cos(9) \right] (F_{g2}) + (F_{g3}) + (F_{poL}) + (F_{piL}) + (F_{rL}) + (F_{rL}) + (F_{shL}) \right] \times 10^{-3}$

= (84) $\left[2(98) + 2(97) \left[1 + \cos(198a) \right] + (225) + (231) + (222a) + (222a) + (222e) + (232e) + (232e) + (222e) + (2$

i		1	55
	(232)	B _{shL}	SHAFT DENSITY at full load $B_{shL} = \frac{(\emptyset_{shL})}{(A_{sh})} = \frac{(221)}{(112)}$
	(233)	$\mathbf{F_{shL}}$	SHAFT AMPERE TURN DROP $F_{shL} = (\mathbf{I}_{sh}) \left[\text{NI/inch at density } (B_{sh}) \right]$
			= (114) Look up on shaft magnetization curve at density (232)
	(236)	F _{FL}	$ \begin{array}{ll} \underline{\text{TOTAL AMPERE TURNS}} \text{ at full load} \\ \\ F_{\text{FL}} &= 2(F_{\text{C}}) + 2(F_{\text{T}}) \left[1 + \cos(\theta) \right] + (F_{\text{g2L}}) + (F_{\text{g3L}}) + (F_{\text{poL}}) + (F_{\text{piL}}) \\ \\ &+ (F_{\text{rL}}) + (F_{\text{shL}}) + (F_{\text{yL}}) \\ \\ &= 2(98) + 2(97) \left[1 + \cos(198a) \right] + (225) + (231) + (222a) + (222c) \\ \\ &+ (222e) + (233) + (229c) \end{array} $

	1	·
(237)	I_{FFL}	FIELD CURRENT at 100% load
		$I_{FFL} = (F_{FL})/(N_F) = (236)/(146)$
(239)		CURRENT DENSITY at 100% load
		Current Density = $(I_{FFL})/(a_{cf}) = (237)/(153)$
(238)	EFFL	FIELD VOLTS at 100% load - This calculation is made with ho field resistance at expected temperature at 100% load.
		Field Volts = $(I_{FFL})(R_{f hot})$ = $(237)(155)$
(241)	I ² RFL	FIELD I ² R at 100% load - The copper loss in the field winding is calculated with hot field resistance at expected temperature for 100% load condition.
		Field $I^2R = (I_{FFL})^2(R_{f \text{ hot}}) = (237)^2(155)$
(242)	W _{TFL}	STATOR TEETH LOSS at 100% load - The stator tooth loss under load increases over that of no load because of the parasitic fluxes caused by the ripple due to the rotor damper bar slot openings. $W_{TFL} = \left\{ 2 \left[.27 (\underline{X}_{d}) \frac{(\% \text{ Load})}{100} \right]^{1.8} + 1 \right\} (W_{TNL})$
		$= \left\{2 \left[27(\underline{133}) \ 1\right]^{1.8} + 1\right\} (148)$

(243)	$\mathtt{w_{PFL}}$	POLE FACE LOSS at 100% load
		$W_{PFL} = \left\{ \frac{(K_{SC})(I_{PH}) \frac{(\% \text{ Load})}{100} (n_S)}{(C)(F_g)}^2 + 1 \right\} (W_{PNL})$
		, ,
		$= \left\{ \left[\frac{(242)(8) \ 1}{(32)(96)} \right]^2 + 1 \right\} (186)$
		(K_{SC}) is obtained from Graph 3
(245)	$\rm I^2R_L$	$\underline{\text{STATOR}\ \mathbf{I^2R}}$ at 100% load - The copper loss based on the D.C
		resistance of the winding. Calculate at the maximum
		expected operating temperature.
;		$I^2R = (m)(I_{PH})^2 (R_{SPH hot}) \frac{(\% Load)}{100}$
		$= (5)(8)^2 (54) 1$
(246)		EDDY LOSS - Stator I ² R loss due to skin effect
		Eddy Loss = $ \frac{(EF \text{ top}) + (EF \text{ bot})}{2} - 1 $ (Stator I ² R)
		$= \overline{\left[\frac{(55) - (56)}{2} - 1\right]} (245)$
(247)		TOTAL LOSSES at 100% load - sum of all losses at 100% load
		Total Losses = (Field I^2R) + (F&W) + (Stator Teeth Loss)
		+ (Stator Core Loss) + (Pole Face Loss)
		+ (Stator I ² R) + (Eddy Loss)
		= (241) + (183) + (242) + (185) + (243) + (245) + (246)

	ŀ	1				
(248)		RATING IN KILOWATTS at 100% load				
		Rating = $3(E_{PH})(I_{PH})$ - (P.F.) $\frac{(\% \text{ Load})}{100} \times 10^{-3}$				
		$= 3(4)(8) (9)(1.) \times 10^{-3}$				
(249)		RATING AND LOSSES = $(248) + (247)x10^{-3}$				
(249)		<u>% LOSSES</u> = [ξιοςςες κιο ⁻³ /(Rating + € Losses) 100 = [(247)κιο ⁻³ /249] 100				
(251)		<u>% EFFICIENCY</u> = 100% - % Losses = 100% - (250)				
		These items can be recalculated for any load condition by				
		simply inserting the values that correspond to the % load				
		being calculated. The factor $\frac{(\% \text{ Load})}{100}$ takes care of (I_{PH})				
		as it changes with load.				
		Note that values for F&W (183) and WC (Stator Core Loss)				
		(185) do not change with load, therefore, they can be cal-				
		culated only once.				

AXIAL AIR GAP LUNDELL GENERATORS

Axial air gap synchronous generators have definite design limits that allow the prediction of generator output from stator O.D. and RPM.

Discussion

When the axial air gap machine is worked to definite limits of current loading and air gap density, simply specifying the speed and the KVA output determines the diameter of the stator.

To determine the size of a specific type of generator at different speeds and ratings, a stator current loading limit and an air gap density limit should be assumed. For the determination of the size of the axial gap generators, an ampere loading of 900 ampere-conductors per inch of circumference of the stator has been used. This circumference is at the average diameter = $\frac{OD + ID}{2}$. The gap density has been fixed at 40 Kl/in^2 . This density is the actual maximum of the flux wave under each pole. The equations used assume a sine wave of flux, or that the maximum fundamental of the pole flux wave is equal to the actual maximum of the flux wave. For concentric poles (square flux waves), this occurs at a pole embrace of 55%.

 $40~{
m Kl/in}^2$ gap density and 900 amp-conductors per inch are set as the design limits.

The following discussion explains the derivation of the output equation used to determine generator sizes.

The output of a three phase generator is KVA =
$$\frac{I_{LL} E_{LL} \sqrt{3}}{10^3}$$

The voltage is defined by -

$$\mathbf{E_{LL}} = \frac{\phi_{\mathbf{T}} \text{ (RPM) Cw Ne}}{60 \times 10^5}$$

See derivation elsewhere in report.

Where ϕ_{T} = Hypothetical total flux in air gap in Kilolines,

$$Cw = \frac{E_{LL}}{M \text{ Eph}} \cdot \frac{C_1 K_d}{\sqrt{2}} = .39 C_1$$

m = No. of phases

 C_1 = Ratio $\frac{\text{maximum fundamental}}{\text{actual maximum}}$ of the flux wave = 1.0 for sine wave

Ne = Total effective conductors in the machine

The basic voltage equation is substituted in the output equation.

KVA =
$$E_{LL} I_{L} \frac{\sqrt{3}}{10^{3}} = \frac{\emptyset_{T} RPM C_{w} Ne I \sqrt{3}}{60 \times 10^{5} \times 10^{3}}$$

$$\phi_{T} = B_{Gap} A_{Gap}$$
 and

$$I = \frac{A \pi D}{Ne}$$
 where

A = Ampere wire/inch loading of stator based on the average diameter of stator

KVA =
$$\frac{\text{Bg } (\pi D \ell_c) \text{ RPM } (.39 \text{ C}_1) \text{ Ne } \sqrt{3} \text{ A} \pi D}{60 \times 10^8}$$
 Ne

$$KVA = \frac{Bg \ 9.85 \ D^2 \ \ell_c \ RPM \ .39 \ C_1 \ A \ \sqrt{3}}{60 \times 10^8}$$

$$KVA = \frac{Bg D^2 \ell_c RPM A}{90 \times 10^7}$$
 Basic eqn.

For axial air gap machines

D = average diameter of stator
$$= \frac{OD + ID}{2}$$

For radial air gap machines

D = rotor diameter.

To allow a general treatment of the axial air gap machine, the typical design will be considered to have the following characteristics:

Stator OD =
$$\frac{3}{2}$$
 stator ID

Gap density = Bg =
$$40 \text{ Kl/in}^2$$

Ampere loading = A =
$$900 \frac{\text{Amp. Cond.}}{\text{in.}}$$

Then,

$$KVA = \frac{Bg D^2_{avg} \ell c RPM A}{90 \times 10^7}$$

$$D_{avg} = \frac{OD + \frac{2}{3} OD}{2} = \frac{5}{6} OD$$

$$\ell_{\rm c} = \frac{1}{6} \, \rm op$$

and,

KVA =
$$40 \frac{25}{36} (OD)^2 \frac{1}{6} (OD) \frac{RPM (900)}{90 \times 10^7}$$

$$KVA = \frac{4.63 (OD)^3 RPM}{10^6}$$

Area of stator = $.437 \text{ (OD)}^2$

Total flux = 40 (Area of stator) = $17.5 \text{ (OD)}^2 \text{ Kl}$.

$$\phi_{\mathbf{P}} = \text{approx. } \frac{\phi_{\mathbf{T}}}{\text{Poles}} \times .56$$

$$\emptyset$$
 shaft = approx. \emptyset_T x .27

When the ID of the stator is fixed at $\frac{2}{3}$ OD, the diameter which divides the stator into two equal areas is .85 OD. The average diameter is $\frac{5}{6}$ OD or .835 OD -- a 1.75% difference. This difference will be ignored and the average diameter $\frac{5}{6}$ OD will be used as the design diameter for all calculations.

For axial air gap generators

$$KVA = \frac{4.63}{10^6} (OD)^3 RPM$$

OD	(OD) ³		x 6000	12000	
3	27	. 125 (10 ⁻³)	. 75	1.5	
4	64	. 296 (10 ⁻³)	1.77	3.54	
5	125	.58 (10 ⁻³)	3.48	6.96	
6	216	1.00 (10 ⁻³)	6.00	12.0	
7	343	1.59 (10 ⁻³)	9.55	19.1	
8	512	2.37 (10 ⁻³)	14.2	28.4	
9	730	3.38 (10 ⁻³)	20.3	40.6	
10	10 ³	4.63 (10 ⁻³)	27.7	55.4	
11	1330	6.16 (10 ⁻³)	37.0	74.0	
12	1728	8.0 (10 ⁻³)	48.0	96.0	
13	2197	10.15 (10 ⁻³)	61.0	122.0	
14	2744	12.7 (10 ⁻³)	76.3	152.6	

KVA for RPM Shown

OD	6000	8000	10, 000	12,000	15, 000	20,000	24, 000
3	. 75	1.0	1.25	1.5	1.88	2.5	3.0
4	1.77	2.36	2.95	3.54	4. 42	5.9	7.08
5	3.48	4.63	5.8	6.96	8.7	11.6	13.92
6	6.00	8.0	10.0	12.0	15.0	20.0	24.0
7	9.55	12.7	15.9	19.1	23.9	31.8	38.2
8	14.2	18.9	23.6	28.4	35.5	47.2	56.8
9	20.3	27.1	33.8	40.6	50.7	67.6	81.2
10	27.7	3 6.9	46.2	55.4	69.2	92.4	110.8
11	37.0	49.3	61.7	74.0	92.5	123.4	148.0
12	48.0	64.0	80.0	96.0	120.0	160.0	192.0
13	61.0	81.3	102.0	122.0	153.0	204.0	244.0
14	76.3	101.5	127.0	152.6	191.0	254.0	305.2

ESTIMATING THE COIL WEIGHT AND 12R LOSS

Based on 80% ratio of $\frac{\text{Field Copper Area}}{\text{Total Coil Area}}$ for field coils and a current density of 5000 amps/in², 4000 ampere turns would require one square inch of coil cross section.

Assume a square copper coil in all cases then using the coil inner diameter; d_c :

WT =
$$\left[d_c + \frac{AT}{4000} \times \frac{AT}{4000} \right]$$
. 321 lbs. (1)

Where $d_c = coil$ inner dia, inches

Here the weight of coil hangers and insl. is estimated at 20% of the total.

$$\frac{I^{2}R \text{ Loss}}{\text{Lb. Cu.}} = \left(\frac{\text{Amps}}{\text{In.}}\right)^{2} \frac{\rho}{\#/\text{in}^{3}} = 25 \frac{(10^{6})}{.321} \rho(.8)$$

Where P = Coil resistivity in microhm inches at 400° F and 5000 amps/in^2 in CU, use Wt. obtained in equation (1) x .8

$$I^{2}R Loss = \frac{25 (1.17) \cdot 8 (WT Coil)}{.321} = 73 (WT.) Watts$$
 (2)
 $@ 400^{\circ}F (240^{\circ}C)$

ROTOR STRESSES

The speed and rating obtainable from a generator are functions of allowable rotor stresses.

The brushless generator rotors can be made into composite cylinders and preliminary stress treatment can be on the basis of a cylinder of homogeneous material.

Maximum stress in a homogeneous solid disk is -

Max.
$$S_r = MAX_{st}^{St} = \frac{1}{8} \frac{\sqrt[3]{W^2}}{386.4} (3 + v) R^2$$
 $R = \text{disk outside radius, inches} \quad |W| = RAD/SEC$
 $v = \text{Poisson's Ratio} = .26 \text{ for steel (general approximation)}$
 $S = \frac{.283}{8} \frac{(2\pi)^2 N^2}{386.4 (3600)} (3.26) R^2$
 $S = \frac{.283}{10^6} N^2 R^2$

A more realistic condition usually is represented by a cylinder with a hole in the center.

The maximum stress in a homogeneous circular disk or a cylinder with a small hole in the center is:

Max
$$S_t = \frac{1}{4} \frac{VW^2}{386.4} \left[(3 + v) R^2 + (1 - v) R_0^2 \right]$$

R = disk outside radius, inches

 $R_0 = disk inside radius, inches$

If Ro is small and insignificant

Max
$$S_t = \frac{1}{4} \frac{\langle w^2 \rangle}{386.4} (3 + v) R^2$$
 PSI

This equation gives twice the stress calculated in a disk without a hole or -

$$S_t = \frac{6.52}{10^6} N^2 R^2$$

EQUIVALENT CIRCUITS FOR SYNCHRONOUS GENERATORS

Introduction

In the statement of work describing this study, an equivalent circuit is requested. The description in part reads: "The circuit and parameters chosen and evaluated should be capable of completely describing both steady state and transient performances including various overloading and short-circuit capabilities."

"Parameters for the equivalent circuit are to be derived and evaluated."

"Transfer functions and time constants are to be derived and evaluated."

"All applicable reactances are to be derived and evaluated e.g., synchronous, positive and negative sequence, transient and subtransient, direct and quadrature axes, armature, leakage, armature reaction, etc."

This section contains a derivation of an equivalent circuit submitted to satisfy the requirement for a circuit describing steady state and transient performance. This circuit also describes the performance of the generator when subjected to unbalanced loading.

The derivation of the equivalent circuit described here is an original work by Liang Liang.

Overloading, short-circuit capabilities, time constants and reactance are derived and calculated elsewhere in the study.

The equivalent circuits themselves are on Pages 31, 33, 72 and 73. The symbols are on Pages 2 and 3. Derivations and explanations are given step-by-step.

Nomenclature

Symbol

T - torque

1 - distance

v - velocity

F - force

e - voltage

i - current

 Ψ - flux linkage

 ω - frequency in rad/sec

R - resistance

L - inductance

O - power factor angle

X - reactance

p - power

J - moment of inertia

D - damping factor

K - conversion constant

f - frequency in cycles per sec

P - number of poles

M - mutual inductance

N - turns of winding

Z - impedance

s - Laplace operator

G(s) - transfer function

 $\overline{\Phi}(s)$ - power density spectrum

 $\phi(t)$ - correlation function

Subscript

R - resultant

 ∞ , β - reference frames

en - electromagnetic

d - direct axis

q - quadratic axis

a - armature

f - excitation field

md - direct axis magnetizing component

mq - quadratic axis magnetizing component

Dd - direct axis damper bar

Dq - quadratic axis damper bar

g - generator

al - armature leakage

Fl - field leakage

o - zero sequence

s - shaft

t - terminal

L - load

a -)

b -) phases

c =

A - load of phase

B - load of phase b

C - load of phase c

i - input

Symbol

T - time constant

A - amplifier

C - capacitor

SJ - summing junction

t - time

E(s) - voltage

 \mathcal{E} - error signal

- integrator

- - operation amplifier

x, x - multiplifier

- square root

O - potentiometer

- - high gain amplifier

sq - square

x - state vector

m - control vector

n - disturbance vector

A - coefficient matrix

B - driving matrix

Em - exponential

ln - natural logarithm

S - sensitivity

Subscript

ab - between phase a and b

bc - between phase b and c

ca - between phase c and a

r - rated

fb - feedback

g - generator

e - excitation

ss - steady state

I FUNDAMENTALS

1. Assumptions

- (a) Symmetrical three phase, delta or Y-connected machine with field structure symmetrical about the axis of the field winding and interpolar space.
- (b) Armature phase mmf in effect, sinusoidally distributed.
- (c) Magnetic and electric materials are rigidly connected.
- (d) Neglect eddy current in armature iron.
- (e) Neglect hysteresis effect.
- (f) Neglect magnetic saturation (optional).
- (g) Rotor considered as stationary reference frame.
- (h) Parameters are time invariant.

2. Classical Approach

For all electric machines, the dynamic equation of Lagrange applies (in tensor):

$$T^{\infty} = \frac{d}{dt} \left(\frac{\partial T_R}{\partial v^{\infty}} \right) - \frac{\partial T_R}{\partial \ell^{\infty}} + \frac{\partial F_{\ell m}}{\partial v^{\infty}} \tag{1}$$

The stator and the rotor of the machine are considered as reference frames respectively. This holonomic expression has to be transformed into unholonomic before the two-reaction theory can be applied. That is, to choose an arbitrary frame (stator or rotor) as statonary and the other considers it as reference. Thus -

$$\mathcal{T}^{\infty} = \frac{d}{dt} \left(\frac{\partial T_R}{\partial v^{\infty}} \right) - \frac{\partial T_R}{\partial l^{\infty}} + \frac{\partial F_{2m}}{\partial v^{\infty}} + \frac{\partial T_R}{\partial v^{\infty}} v^{\beta} Q_{\alpha\beta}^{\delta} \quad (2)$$

$$Q_{\alpha\beta}^{\sigma} = \left(\frac{\partial C_R^{\delta}}{\partial l^n} - \frac{\partial C_R^{\delta}}{\partial l^R} \right) C_{\alpha}^{R} C_{\beta}^{n}$$

= non-holonomic object

 C_{∞}^{k} C_{β}^{n} = transformation tensors

The complexity in solving the problem directly is obvious; therefore, other approaches are used.

3. Basic Equations

By means of the two-reaction method and by choosing the rotor as the stationary reference frame, the representation of the dynamic behavior of synchronous generators can be written in set of ordinary differential equations. The reference frame is resolved into direct and quadratic axis.

Armature -

$$e_d = -Ra i_d + \frac{d}{dt} Y_d - Y_g \omega_g$$
 (3)

$$e_g = -Raig + \frac{d}{dt} Y_g + Y_d \omega_g \tag{4}$$

$$e_t = \sqrt{e_d^2 + e_g^2} \tag{5}$$

$$\Psi_g = -(Lm_g + L_{12}) ig + Lm_g i_{E_g}$$
 (7)

Field -

$$e_f = R_f i_f + \frac{d}{dt} Y_f \tag{8}$$

Damper bar -

$$e_{Dd} = R_{Dd} i_{Dd} + \frac{d}{dt} Y_{Dd} = 0 \qquad (10)$$

$$e_{Dq} = R_{Dq} i_{Dq} + \frac{d}{dt} Y_{Dq} = 0 \qquad (11)$$

$$Y_{Dq} = -L_{mq} i_q + (L_{mq} + L_{Dq}) i_{Dq} \qquad (13)$$

Zero sequence -

$$e_o = -R_o i_o + \frac{d}{dt} Y_o \tag{14}$$

$$\Psi_o = -L_o i_o \tag{15}$$

Electromagnetic torque -

(16)

(I) Under excited

(II) Over excited

Fig. 3 Steady state vector representation

4. Simplification

If detailed accuracy is not essential, it can be traded for simplification. Damper bar, armature resistances and leakage reactances have relatively small effects on voltage, current and phase relationship in a normal steady state operation. Therefore, they can be ignored.

$$e_{\varsigma} = R_{\varsigma} i_{\varsigma} + \frac{d}{dt} Y_{\varsigma} \tag{17}$$

$$e_d = \frac{d}{dt} \Psi_d - \Psi_g \omega_g \qquad (18)$$

$$e_g = \frac{d}{dt} Y_g + Y_d \omega_g \tag{19}$$

$$\Psi_f = L_{md} (i_f - i_d) \qquad (20)$$

$$\Psi_{d} = \Psi_{f}$$
 (21)

$$\Psi_q = -L_{mgiq}$$
 (22)

Additional simplification can be made in a situation where only the steady state condition of a synchronous generator is considered in a complex system. Since all the time dependent variables become constant as the transient settles down, their rates of change approach to zero. A set of algebraic equations is derived below.

$$e_{\varsigma} = R_{\varsigma} i_{\varsigma} \qquad (24)$$

$$e_{d} = -Y_{\varsigma} w_{\varsigma} \qquad (25)$$

$$e_{\varsigma} = Y_{d} w_{\varsigma} \qquad (26)$$

$$Y_{\varsigma} = L_{md} (i_{\varsigma} - i_{d}) \qquad (27)$$

$$Y_{d} = Y_{\varsigma} \qquad (28)$$

$$\Psi_g = -L_{mg} ig$$
 (29)

5. Inputs and Outputs

(a) Most literature in discussing the synchronous generator choose the frequency ω g and the field excitation voltage \mathcal{C} f as inputs and the terminal voltage which is resolved into two-axis components as outputs. They are applied to the balanced loads while the direct and quadratic currents feedback to the generator.

Fig. 4 Balanced load simulation

It should be recognized that the functions of Cd, Cq and iq, iq can be reversed.

(b) For a more detail representation, electric-mechanical relation can be included. Thus, the fluctuations of the frequency and of its dependent variables can be observed. Otherwise, the shaft speed ws has to be assumed well regulated to stand against any disturbance. Consider the shaft is rigid.

Figure 5

$$p_i = T_i \, \omega_s \qquad (3i)$$

$$T_i - T_{em} = J \, \frac{d \, \omega_s}{dt} + D \, \omega_s \qquad (32)$$

$$\omega_g = \frac{P}{2} \cdot \frac{\omega_s}{s0} \qquad (33)$$

Where pi is the input power, \mathcal{T}_{i} input torque, and P, number of poles.

The moment of inertia J should include that of the prime mover. The damping factor D is a non-linear element which consists of mechanical losses like friction and windage. The latter is proportional to square of shaft speed $\omega_{\rm g}$.

- (c) The power supply for the field excitation of a synchronous generator ideally comes from a battery. In practice, it is either from a DC generator or by means of static excitation for the purpose of regulation.
 - (i) The transfer function of the output voltage and the excitation voltage of a DC generator in frequency domain is

Fig. 6 DC generator

(ii) Static excitation for synchronous generator becomes widely accepted for obvious reasons like faster response and the elimination of rotating excitation machine. A typical approach is stated as follows: Excitation is provided to the generator from load currents through current transformers and rectifiers. The voltage regulator plays the role of no-load excitation and regulation of terminal voltage under different load conditions.

Such a method can be applied, for instance, for a two-coil Lundell generator with both the armature and the field stationary.

Fig. 7
Static Excitation

es=Rsis+d ys	(35)
is=ist + isR	(35a)
$\Psi_{f} = \Psi_{fT} + \Psi_{fR}$	(36)
ist=KiL	(37)
4x7 = (Lmd+Lse) ifT	(38)

(d) For a detail study of synchronous generator, unbalanced load simulation is suggested. The affects of all kinds of faults due to the load can be pictured simply by adjusting the load parameters. Balanced load condition is only a special case. The major feature of an analog simulation is to convert DC representing voltages of $e_{\mathcal{A}}$ and $e_{\mathcal{A}}$ into three phase AC components $e_{\mathcal{A}}$, $e_{\mathcal{B}}$ and $e_{\mathcal{C}}$ which are applied to the unbalanced load. The AC components $\hat{e}_{\mathcal{A}}$, $\hat{e}_{\mathcal{B}}$ and $\hat{e}_{\mathcal{C}}$ are converted back into DC level before feeding back to the generator. Certainly the price to pay for is complexity.

Fig. 8 Unbalanced load analog simulation

6. Conversion

For the unbalanced load simulation, the direct and quadratic output voltages of the generator have to be converted into corresponding three phases before applying to the load. Similarly, the currents from the load have to be converted back into direct and quadratic components before returning to the machine.

$$e_a = e_d Sin(\omega_g t) - e_g cos(\omega_g t) + e_o$$
 (39)

$$e_b = e_d \sin(\omega_3 t - \frac{2\pi}{3}) - e_q \cos(\omega_3 t - \frac{2\pi}{3}) + e_o$$
 (40)

$$e_c = e_d sin(\omega_g t - \frac{4\pi}{3}) - e_2 cos(\omega_g t - \frac{4\pi}{3}) + e_0$$
 (41)

$$i_{d} = -\frac{2}{3} \left[i_{a} \cos(\omega_{g}t) + i_{b} \cos(\omega_{g}t - \frac{2\pi}{3}) + i_{c} \cos(\omega_{g}t - \frac{4\pi}{3}) \right]$$

$$(42)$$

$$i_{g} = \frac{2}{3} \left[i_{a} Sin(\omega_{g}t) + i_{b} Sin(\omega_{g}t - \frac{2\pi}{3}) + i_{c} Sin(\omega_{g}t - \frac{4\pi}{3}) \right]$$

$$i_{c} Sin(\omega_{g}t - \frac{4\pi}{3})$$
(43)

$$e_o = \frac{1}{3} \left(e_x + e_b + e_c \right) \tag{44}$$

$$i_o = \frac{1}{3} \left(i_a + i_b + i_c \right) \tag{45}$$

The load is normally expressed in Y-connection. If delta load is used, proper connection of load can be made as in the analog simulation or convert them into Y-connection by using the following equations:

Fig. 9 Delta to Y-connection conversion

$$Z_a = \frac{Z_{ab} Z_{ac}}{Z_{ab} + Z_{bc} + Z_{ac}} \tag{46}$$

$$Z_b = \frac{Z_{ab} + Z_{bc}}{Z_{ab} + Z_{bc} + Z_{ac}} \tag{47}$$

$$Z_c = \frac{Z_{ac} Z_{bc}}{Z_{ab} + Z_{bc} + Z_{ac}} \tag{4.8}$$

7. Load

(a) Balanced load -

Balanced load can also be resolved into two-axis, direct and quadratic components. Only the resistive and inductive load are considered.

The load can be expressed in another form.

$$id = \frac{\cos \theta}{|Z_{i}|} e_{d} + \frac{\sin \theta}{|Z_{i}|} e_{g} \qquad (5)$$

$$ig = \frac{-\sin \theta}{|Z_L|} e_d + \frac{\cos \theta}{|Z_L|} e_z$$
 (52)

$$|\mathcal{Z}_{i}| = \sqrt{R_{i}^{2} + \chi_{i}^{2}} \tag{53}$$

$$\Theta = \tan^{-1}(x_L/R_L) \tag{54}$$

Thus, the load is governed by the power factor, or vice versa.

(b) Unbalanced load -

Again, only resistive and inductive load are considered. However, mutual inductances among the loads are included.

8. Parameter

All the machine parameters are practically time invariant. Their derivations can be found in the enclosed design manual or other standard texts on synchronous generator. Usually inductive reactance are given. To obtain the absolute inductive value, divide the reactance by the rated generator frequency. The unit of frequency should be in radians per second. The direct and the quadratic reactances computed from the design manual have taken care of whether the armature winding is Y or delta-connected as well as the number of pole pairs.

9. Time Constants

Direct-axis open-circuit transient time constant

$$T'_{do} = \frac{L_{f2} + L_{md}}{R_{f}} \tag{56}$$

Direct-axis short-circuit time constant

$$T'_{\mathcal{L}} = T'_{\mathcal{L}}, \frac{\mathcal{L}'_{\mathcal{L}}}{\mathcal{L}_{\mathcal{L}}} \tag{56a}$$

where

$$L'd = Lax + \frac{Ln + Lax}{Ln + Lax}$$

$$(56c)$$

With external inductive load, the direct-axis short-circuit time constant is adjusted to

$$T'_{de} = T'_{d} \frac{L'_{d} + L_{L}}{L_{d} + L_{L}} \cdot \frac{L_{d}}{L'_{d}} \tag{57}$$

There is no definite formula to compute the direct-axis short-circuit subtransient time constant. Usually it is obtained from measurement.

Fig. 10 Short circuit transient time constants measurement

10. Non-Linear Elements

(a) The basic equations -

$$e_{d} = -R_{a}i_{d} + \frac{d}{dt} \frac{\psi_{d}}{dt} - \frac{\psi_{g}}{dt} \omega_{g}$$
 (3)

etc., are non-linear. The non-linear term ψ_q ω_q in this equation is introduced because of the transformation from holonomic reference frames into non-holonomic and so as the other analogous.

(b) Magnetic saturation -

It is an inherent property of magnetic material. Usually for the design of generators a steel of low retentivity is used. The hysteresis loop is narrow and thus its effect can be neglected. An average saturation curve can be used to describe the characteristics of the magnetic path.

The average magnetization curve can also be expressed in terms of and

Fig. 11b Magnetic saturation approximation

The compensation σ versus the terminal voltage e+ is derived from the difference between the air gap line and the no-load saturation curve.

Further approximation can be developed by assuming $\chi_{m}\chi$ independent or saturation (corresponds to path mostly in air). Only $\chi_{m}\chi$ varies with the flux. As the generator starts to saturate, $\chi_{m}\chi$ changes accordingly. This can be approximated by adding a factor to $i \in \mathcal{L}$ by the amount proportional to the difference between the air gap line and the no-load saturation curve. If the operating point is below the knee of the curve, a linear relation can be assumed.

(c) Mechanical elements -

As in the more detail simulation, the mechanical relation between the prime mover and the generator is included.

(i) If gear is used for coupling, there will be backlash.

Fig. 12 Backlash

(ii) Sometimes a mechanical damper is used to eliminate the mechanical resonance near the low speed end.

Fig. 13 Mechanical Damper Response

(iii) The windage and friction loss is proportional to the square of the shaft speed.

Analog simulations of

(i) Magnetic saturation - (approximated)

(ii) Mechanical relation -

ll. Linearization

In the basic equation

the non-linearity is introduced by the product of two time varying functions $\omega_{\mathcal{F}}$ and $\mathcal{F}_{\mathcal{F}}$. Since all the variables are continuous functions of time and are likely to be monotonic, linearization is possible. For small increment of change, the equation can be written in a linear form. (Derivation is in section II-2. $\omega_{\mathcal{F}}$, etc., are steady state values.)

$$\Delta e_{d} = -R_{a}(\Delta i_{d}) + \frac{d}{d\epsilon}(\Delta Y_{d}) - \overline{Y}_{2}(\Delta \omega_{g}) - \overline{\omega}_{g}(\Delta Y_{g})$$
 (52)

For constant drive generator, $\Delta \omega_j = 0$

$$\Delta e_{d} = -R_{1}(\Delta i_{d}) + \frac{d}{dt}(\Delta \Psi_{d}) - \overline{\omega}_{f}(\Delta \Psi_{f})$$
 (59)

To compare with the original equation by setting $\omega_q=\overline{\omega_g}$, the choice of magnitude of the increments for accuracy becomes obvious. Indeed they can be simply expressed as -

Another alternative is that the flux linkages are kept constant. Thus all currents are invariant. Neglecting R_{Q} ,

$$e_d = -\overline{\Psi}_q \omega_q$$
 (61)

the voltage will be directly proportional to the generation frequency.

However, when the change $\Delta \omega_g$ and ΔV_g are considered simultaneously, the constraints of the increments are imposed. A larger value of increment will sacrifice the accuracy. Since a steady state value of $\overline{\omega}_g$ has been chosen as the coefficient of ΔV_g , on the other hand, $\Delta \omega_g$ is time varying and its relatively large change will make $\overline{\omega}_g$ invalid. Similar argument applies to the term $\overline{V_g}$ ($\Delta \omega_g$) and other related equations.

The linear transfer relations are:

$$E_{\xi}(s) \longrightarrow E_{\xi}(s)$$

$$W_{0}(s) \longrightarrow E_{\xi}(s)$$

Fig. 15

(a) Constant speed

(b) Constant flux linkage

12. Per unit system

It may be convenient for some individuals to use per unit system instead of absolute value.

$$p_{base} = e_{base} i_{base}$$
 (63)

Rbase,
$$X_{base}$$
, $Z_{base} = \frac{e_{base}}{i_{base}}$ (64)

$$T_{base} = \frac{p_{base}}{\omega_{base}} \tag{65}$$

13. Power density spectrum

If the input is in power density spectrum form and the generator is linearized and expressed in frequency domain as G(S) and its conjugate G(-S)

$$\overline{\Phi}_{oo}(s) = G(s)G(-s)\overline{\Phi}_{ii}(s) \qquad (66)$$

assuming the input and output spectrums are autocorrelated. The output can be converted into mean square value, say of e_{+} .

$$\frac{e_{t}(t)^{2}}{e_{t}(t)^{2}} = \phi_{oo}(o)$$

$$= \int_{-\infty}^{\infty} \overline{\Phi}_{\infty}(s) e^{st} ds \Big|_{t=0}$$

$$= \int_{-\infty}^{\infty} G(s) G(s) \overline{\Phi}_{ii}(s) ds \qquad (67)$$

The evaluation can be implemented analogously or by using the table of integrals which can be found in many advanced control engineering texts.

Fig. 16a Power density spectrum

Fig. 16b Analog simulation

14. Faults

Faults are restricted to the load. They may be line to line, line to neutral, etc. In the unbalanced load simulation, the faults can be pictured simply by appropriate arrangement or by adjusting the load parameters of the corresponding phase. For example, if phase \boldsymbol{a} is shorted to neutral, set $R_{A} = O$; $L_{A} = O$.

When it is open, theoretically R_A and L_A become infinity. In computer practice they can be set many orders larger than the normal value. Use the same tactic as in cases like $1/L_A$, while L_A is zero.

15. Converter

In the unbalanced load simulation, converters are required to generate ω_o was and Sin wast as functions of ω_o . (Refer to e.g.s. (39) - (43)) By Laplace transformation

$$\mathcal{L}\left[\cos \omega_g t\right] = \frac{s}{s^2 + \omega_g^2} = A \qquad (68a)$$

$$\mathcal{L}\left[\sin \omega_g t\right] = \frac{\omega_g}{5^2 + \omega_g^2} = B \qquad (68b)$$

$$A = \frac{B}{\omega_g} \cdot S \tag{68c}$$

The analog simulation -

Fig. 17 DC to AC converter analog

16. Minimum Time Starting

It has been proved theoretically that switching control can achieve the minimum time for a system to reach its steady state value after a step disturbance. Due to the inherent defect of physical components like deadband and frictions, dual-mode control is suggested. That is, the switching control takes care of large error signal while the linear control takes care of the small error signal in the feedback control loop to generate the manipulated input, say excitation voltage eg for the synchronous generator. (Constant shaft drive)

Fig. 18 Dual-mode control for minimum time starting

To start a synchronous generator, considering the shaft drive has assumed its constant speed, the reference as a step function is applied. The optimum switching boundary computer recognizes the zero initial state and the final state from the reference signal and decides the switching points according to the orders of dynamics of the plant. (For an nth order linear time invariant controllable system, with poles real and non-positive, requires no more than n-l switchings and an initial-on and a final-off operation to reach final steady state in minimum time.) When the error signal falls within the dead-band of bang-bang controller, the linear control takes over.

Fig. 18a Second order system step function response

17. Modern Control Formulation

Fig. 19a Multivariable process

x - state vector

m - control vector

η - disturbance vector

For a stationary process, the dynamic characteristics are -

$$\dot{\mathbf{X}}(t) = \mathbf{A}\mathbf{X}(t) + \mathbf{B}\mathbf{D}(t) + \mathbf{D}(t)$$

(69a)

<u>X</u> - differential state vector

A - coefficient matrix

B - driving matrix

The solution will be - (from initial state at time t_o to final state at t)

(69b)

II BALANCED LOAD

Analog Simulation

Use the basic synchronous generator dynamic eqs. (3) to (13), (16) and balanced load eqs. (51) to (54). The operating frequency is absorbed into the reactances such as Xmd = WrLmd where Wr is the rated frequency. Per unit system is used. After s me manipulation, a block diagram is concluded in Fig. I where

$$TDd = \frac{Xmd + XDd}{RDd}$$
 (71a)

$$Tog = \frac{\chi_{mq}}{Roq}$$
 (716)

For the sake of convenience, Laplace operator S is used for differentiation while 1/S, for integration with initial condition, equals to zero. Magnetic saturation is approximated.

The inputs to the generator are frequency $\mathbf{w}_{\mathbf{q}}$ and excitation voltage $e_{\mathcal{L}}$.

The transfer functions appear in the block diagram.

$$D_{q}(s) = Xal + \frac{Xmq Xoq}{Xmq + Xoq} + \frac{X^{2}mq}{Xmq + Xoq} \cdot \frac{1}{1 + Toq \cdot s/wr}$$
 (72d)

$$L(s) = \frac{RL}{3^2L} + \frac{5}{Wr} \cdot \frac{XL}{3^2L}$$
 (72e)

The analog computer simulation is in Fig. II. Notice the difference between the circuit representing the first order transfer function and the differentiator.

$$\frac{e_{\text{OUT}}}{e_{\text{IN}}} = -\frac{(R_{\text{fb}}C)s}{(R_{\text{i}}C)s+1} \tag{73}$$

Fig. 20a First order transfer function

The basic values of the components in the presenting analog computer are:

$$\frac{e_{\text{out}}}{e_{\text{in}}} = -\frac{Z_{fb}}{Z_{\dot{L}}} \tag{75}$$

Fig. 21

 \mathbb{Z} fb = 100 K resistor

= 100 K resistor

for an operational amplifier with unity gain. While

天 fb = 10 microfarad capacitor

= 100 K resistor

for an integrator with unity gain and a time constant of one sec.

Pot. No.	Variable	Setting
2	Scaling constant	0.2
7	Xmq+XDq · TDq	0.253
8	TDQ	0.318
9	(/wr) x md 103(Xmd+XDd)	0.054
10	Xal + Xmq XDq Xmq + XDq	0.137
11	XL AT 0.75 P.F.	0.661
12	RL AT 0.75 P.F.	0.75
14	X m ² d Wr (Xmd + XDd)	0.536
15	2 wg X fl	0.248

Pot. No.	Variable	Setting
16	XL AT 0.75 P.F.	0.661
17	Scaling constant	0.5
18	Xm2q Wr(Xmq+XDq)	0.317
19	RL AT 0.75 P.F.	o .7 5
21	Xal	0.083
22	2 wg Rf. 10-2	0.173
23	1/2 × md	0.361
26	50 Wr 100 (ef) base	0.27
28	20 Xod	0.98

Pot. No.	Variable	Setting
48	ω/ω_r	1.0
50	Scaling constant	0.2
55	Ra	0.205
56	Wr (Xal + Xmg XDg).10-1	0•055
57	Ra	0.205
58	Twr (Xal + Xmd Xod), 10-1	0.053

Component	Value	Component	Value
$^{\mathtt{R}}\mathtt{1}$	306 K -^_	$\mathtt{c_1}$	10 uf
R ₂	10 K -^-	c ₂	l uf
R ₃	185 K ∽		
R ₄	100 K		

Time scale: Real time: Computer time = 100:1

2. Digital Computation

(i) Linearization:

For
$$ed = -R\alpha id + \frac{d}{dt} \psi_d - \psi_g w_g$$

Let $ed = \overline{e}d + \Delta ed$
 $id = \overline{i}d + \Delta id$
 $\psi_d = \overline{\psi}d + \Delta \psi_d$
 $\psi_g = \overline{\psi}g + \Delta \psi_g$
 $w_g = \overline{w}g + \Delta \omega_g$

where \tilde{e}_d is the steady state value and Δe_d , a small increment of change. The same definition is applied to other variables.

Let
$$X = \psi_q \omega_q$$

$$\Delta x = \frac{\partial x}{\partial \psi_q} \Delta \psi_q + \frac{\partial x}{\partial \omega_q} \Delta \omega_q$$

$$\frac{\partial x}{\partial \psi_q} \triangleq \omega_q$$

$$\frac{\partial x}{\partial \omega_q} \triangleq \overline{\psi_q}$$

$$\frac{\partial x}{\partial \omega_q} \triangleq \overline{\psi_q}$$

Substitute the relations into the original equation.

Similar procedure is applied to the other basic equations. The results are expressed in matrix.

$$\Delta \psi_{d}$$

$$\Delta \psi_{d}$$

$$\Delta \psi_{q}$$

$$\Delta \psi_{f}$$

$$\Delta \psi_{od}$$

$$\Delta \psi_{o$$

Voltages:

$$\begin{bmatrix}
\Delta e_d \\
\Delta e_g \\
\Delta e_f
\end{bmatrix} = \begin{bmatrix}
S & -\overline{\omega}_g & 0 & 0 & 0 \\
\overline{\omega}_g & S & 0 & 0 & 0 \\
0 & 0 & S & 0 & 0 \\
0 & 0 & 0 & S & 0 \\
0 & 0 & 0 & S
\end{bmatrix}
\begin{bmatrix}
\Delta \psi_d \\
\Delta \psi_g \\
\Delta \psi_f \\
\Delta \psi_{og}
\end{bmatrix}$$

$$+ \begin{bmatrix}
-R_{q} & 0 & 0 & 0 & 0 \\
0 & -R_{q} & 0 & 0 & 0 \\
0 & 0 & R_{f} & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\Delta id \\
\Delta iq \\
\Delta iq \\
\Delta iq
\end{bmatrix}
+ \begin{bmatrix}
-\overline{\psi}q \\
\overline{\psi}d \\
0 \\
0
\end{bmatrix}
\begin{bmatrix}
\Delta \omega_{q}
\end{bmatrix}
\begin{bmatrix}
78i
\end{bmatrix}$$

Laplace transformation has been applied with initial conditions equal to zero. In order to simplify the problem, neglect damper bar, armature resistance, magnetic saturation, armature and field leakage inductances. Eqs. (76) to (78) and the balanced load equations become:

$$\begin{bmatrix}
\Delta e_d \\
\Delta e_q
\end{bmatrix} = \begin{bmatrix}
R_L + S_{L_L} & -L_L \overline{\omega}_q \\
L_L \overline{\omega}_g & R_L + S_{L_L}
\end{bmatrix} \begin{bmatrix}
\Delta i_d \\
\Delta i_q
\end{bmatrix} + \begin{bmatrix}
-L_L i_g \\
L_L i_d
\end{bmatrix} \begin{bmatrix}
\Delta \omega_g
\end{bmatrix} (79)$$

$$\begin{bmatrix}
\Delta e_f \\
\Delta e_d
\end{bmatrix} = \begin{bmatrix}
S & O & O \\
O & S & -\overline{\omega}_q \\
O & \overline{\omega}_g & S
\end{bmatrix} \begin{bmatrix}
\Delta \psi_f \\
\Delta \psi_d
\end{bmatrix} + \begin{bmatrix}
O \\
-\psi_q \\
\Delta \psi_d
\end{bmatrix} \begin{bmatrix}
\Delta \omega_g
\end{bmatrix}$$

$$+ \begin{bmatrix}
R_f & O & O \\
O & O & O
\end{bmatrix} \begin{bmatrix}
\Delta i_f \\
\Delta i_d
\end{bmatrix} (80)$$

$$\begin{bmatrix}
\Delta \phi_f \\
\Delta \phi_d
\end{bmatrix} = \begin{bmatrix}
L_{md} & -L_{md} & O \\
L_{md} & -L_{md} & O
\end{bmatrix} \begin{bmatrix}
\Delta i_f \\
\Delta i_d
\end{bmatrix} (81)$$

$$\begin{bmatrix}
\Delta e_f \\
\Delta e_d
\end{bmatrix} = \begin{bmatrix}
R_f + S_{Lmd} & -S_{Lmd} & O \\
S_{Lmd} & -S_{Lmd} & \overline{\omega}_g L_{mg}
\end{bmatrix} \begin{bmatrix}
\Delta i_f \\
\Delta i_d
\end{bmatrix} (82)$$

$$\begin{bmatrix}
\Delta e_f \\
\Delta e_d
\end{bmatrix} = \begin{bmatrix}
R_f + S_{Lmd} & -S_{Lmd} & O \\
S_{Lmd} & -S_{Lmd} & \overline{\omega}_g L_{md}
\end{bmatrix} \begin{bmatrix}
\Delta i_f \\
\Delta i_d
\end{bmatrix} (82)$$

(86)

Assume constant generator frequency.

[e]
$$\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} \Delta i d \\ \Delta i q \end{bmatrix} = \begin{bmatrix} SLmd \\ \overline{\omega}g Lmd \end{bmatrix} \begin{bmatrix} \Delta e_f \end{bmatrix} \\
\vdots \begin{bmatrix} \Delta i d \\ \Delta i q \end{bmatrix} = \begin{bmatrix} A \end{bmatrix}^{-1} \begin{bmatrix} SLmd \\ \overline{\omega}g Lmd \end{bmatrix} \begin{bmatrix} \Delta e_f \end{bmatrix}$$

$$\begin{bmatrix} \Delta i d \\ \Delta i q \end{bmatrix} = \begin{bmatrix} A \end{bmatrix}^{-1} \begin{bmatrix} SLmd \\ \overline{\omega}g Lmd \end{bmatrix} \begin{bmatrix} \Delta e_f \end{bmatrix}$$

$$\frac{K_{1}(5^{3}+C_{11}s^{2}+b_{11}s+a_{11})}{5^{4}+dp s^{3}+Cp s^{2}+bp s+ap} \left[\Delta e_{f} \right]$$

$$\frac{K_{2}(s^{2}+b_{22}s+a_{22})}{5^{4}+dp s^{3}+Cp s^{2}+bp s+ap}$$

$$= \begin{bmatrix} G_1(s) \\ G_2(s) \end{bmatrix} \begin{bmatrix} \Delta e_f \end{bmatrix}$$
 (88)

$$k_{i} = \frac{1}{L_{L}} \tag{89a}$$

$$K_2 = \frac{\overline{\omega}_g(Lm_g + ZL_L)}{L_L(Lm_g + L_L)}$$
(896)

$$a_p = \frac{R_f^2 R_L^2}{L^2 m d L_L (L m_g + L_L)} + \frac{R_f^2 \overline{w}_g^2 (L m d + L_L)}{L m^2 d L_L}$$
(89c)

$$b_{p} = \frac{R_{f}R_{L}\left[2L_{md}R_{L}+2L_{L}R_{f}+L_{mq}R_{f}+L_{md}R_{f}\right]}{L_{m}dL_{L}\left(L_{mq}+L_{L}\right)} + \frac{\overline{\omega_{g}^{2}}R_{f}\left(L_{md}+2L_{L}\right)}{L_{m}dL_{L}}$$

$$(894)$$

$$C_{p} = \frac{R_{f}R_{L}}{L_{md}L_{L}} + \frac{R_{f}R_{L}}{L_{md}(L_{mg}+L_{L})} + \frac{L_{g}^{2}}{L_{md}L_{L}}$$

$$+ \frac{(L_{md}R_{f} + L_{md}R_{L}+L_{L}R_{f})(L_{md}R_{L}+L_{L}R_{f}+L_{mg}R_{f})}{L_{md}^{2}L_{L}(L_{mg}+L_{L})}$$

$$a_{11} = \frac{\overline{w_g}^2 R_f \left(Lmd + LL \right)}{Lmd \left(Lmg + LL \right)}$$
(899)

$$b_{II} = \frac{R + R_L}{Lmd (Lmq + L_L)} - \frac{\overline{ag}^2 L_L}{Lmq + L_L}$$
 (89h)

$$C_{II} = \frac{R_L}{L mq} + \frac{R_f}{L md} \tag{891}$$

$$a_{22} = \frac{RfRL}{Lmd (Lmq + 2LL)}$$
 (89j)

$$b_{22} = \frac{Rf + RL}{Lmq + 2LL} + \frac{Rf}{Lmd}$$
 (89K)

Generally, wg Lmd, wg Lmg >> wg LL, Rf, RL
AND Rf, RL >> Lmd, Lmg, LL

The coefficients can be approximated.

$$K_1 = \frac{1}{L_L} \tag{90a}$$

$$K_2 = \frac{\omega_q}{L_L} \tag{906}$$

$$a_p = \frac{R_f^2}{Lmd LL} \left(\frac{R_L^2}{Lmd Lmq} + \overline{\omega_g}^2 \right)$$
 (90c)

$$dp = \frac{R_f + R_L}{L} \tag{90} +$$

$$a_{II} = \frac{\overline{w}g^2 Rf}{L mq} \tag{90g}$$

$$b_{II} = \frac{1}{Lmq} \left(\frac{RfR_L}{Lmd} - \frac{\overline{\omega}_g^2 L_L}{2} \right) \tag{90h}$$

$$C_{II} = \frac{R_L}{Lmq} + \frac{R_f}{Lmd} \tag{90i}$$

$$a_{22} = \frac{R_f R_L}{Lmd \ Lmq} \tag{90j}$$

$$b_{22} = \frac{Rf RL}{Lmq} + \frac{Rf}{Lmd}$$
 (90k)

Thus, solve for $\triangle e_d$, $\triangle e_q$.

$$\begin{bmatrix}
\Delta e_d \\
\Delta e_q
\end{bmatrix} = \begin{bmatrix}
R_{L} + sL_{L} & -\overline{u}g L_{L} \\
\overline{u}g L_{L} & R_{L} + sL_{L}
\end{bmatrix}
\begin{bmatrix}
A_{Id} \\
\Delta ig
\end{bmatrix}$$

$$= \begin{bmatrix}
(R_{L} + sL_{L})G_{1}(s) - \overline{u}g L_{L}G_{2}(s) \\
\overline{u}g L_{L}G_{1}(s) + (R_{L} + sL_{L})G_{2}(s)
\end{bmatrix}
\begin{bmatrix}
\Delta e_f
\end{bmatrix}$$

$$\frac{K_{3}(s^{4} + d_{33}s^{3} + C_{33}s^{2} + b_{32}s + d_{33}}{s^{4} + d_{p}s^{3} + c_{p}s^{2} + b_{p}s + a_{p}}$$

$$= \frac{K_{4}(s^{3} + C_{44}s^{2} + b_{44}s + a_{44})}{s^{4} + d_{p}s^{3} + c_{p}s^{2} + b_{p}s + a_{p}}$$

$$\begin{bmatrix}
\Delta e_f
\end{bmatrix}$$

$$= \begin{bmatrix} G_3(s) \\ G_4(s) \end{bmatrix} \begin{bmatrix} \Delta e_f \end{bmatrix} \tag{91}$$

$$K_3 = 1 \tag{92a}$$

$$a_{33} = \frac{R_L}{L_L} a_{11} - \bar{\omega}_g^2 a_{22} \tag{926}$$

$$b_{33} = a_{11} + \frac{R_L}{L_L} b_{11} - \omega_g^2 b_{22}$$
 (92c)

$$C_{33} = \frac{R_L}{L_L} C_{11} + b_{11} - \bar{\omega}g^2$$
 (92d)

$$d_{33} = R_L + C_{11}$$
 (92e)

$$\mathcal{L}_{4} = 2 \overline{\omega}_{q} \tag{927}$$

$$a_{44} = \frac{1}{2} (a_{11} + \frac{R_L}{L_L} a_{22}) \tag{929}$$

$$644 = \frac{1}{2} \left(b_{11} + \frac{R_L}{L_L} b_{22} + a_{22} \right) \tag{92h}$$

$$C44 = \frac{1}{2} \left(C_{11} + b_{22} + \frac{R_L}{L_L} \right) \tag{92i}$$

Fig. 22

G₁(s), G₂(s), G₃(s) and G₄(s) are linear filters. They can be implemented on an analog computer. The coefficient of the filters can be tabulated by digital computer so that a new set of values can readily be obtained when the machine and/or load parameters are changed while this implies to change of potentiometer settings of the analog computer. However, this section will emphasize on theoretical analysis of the equivalent filters. Different kinds of stability analysis methods are used to interpret the relative stability, transient and other concerns. Numerical examples are given along with the discussion. Digital computer is used for the computations.

(ii) First, the characteristics of the transfer functions of the models G₁(s), G₂(s), G₃(s) and G₄(s) are investigated. The denominator is a fourth order polynomial with all the coefficients positive. There will be four poles. Their locations depend on the generator and load parameters and the generator frequency which has been assumed constant. For the system to be stable, all these poles of the closed

loop system must lie on the left half of the complex plane so as to ensure convergence. The closed loop system is assumed to be: (with constant speed drive)

Fig. 23 Closed-Loop System

Thus, the synchronous generator and the load can be considered as an open-loop plant.

A synchronous generator used as a sample throughout the following discussion is rated at 120 volt/lll amp line to neutral with a power factor of 0.75.

 $\overline{\omega}_{2}$ = 2500 radians/second

Lmd = 0.068 henries

Lmq = 0.044 henries

R f = 1.0 ohms

 $R_L = 0.8$ ohms

= 0.0003 henries

From the previous argument and derivation

$$G_{3}(s) = \frac{Ed(s)}{Ef(s)}$$

$$= \frac{5^{4} + 2.73 \times 10^{3} s^{3} - 6.2 \times 10^{6} s^{2} - 6 \times 10^{8} s - 3.84 \times 10^{11}}{5^{4} + 6 \times 10^{3} s^{3} + 6.5 \times 10^{6} s^{2} + 1.37 \times 10^{10} s + 3.08 \times 10^{11}}$$

$$G_{4}(s) = \frac{E_{g}(s)}{E_{f}(s)}$$

$$= \frac{5 \times 10^{3} (s^{3} + 1.4 \times 10^{3} s^{2} - 1.97 \times 10^{4} s - 7.07 \times 10^{7}}{5^{4} + 6 \times 10^{3} s^{3} + 6.5 \times 10^{6} s^{2} + 1.37 \times 10^{6} s + 3.08 \times 10^{4}}$$

The steady state gains are -

$$L_{IM}$$
, $G_3(s) = 1.25$
 L_{IM} , $S_{-0} | G_4(s) = 1.15$

Factorize G₃(s) and G₄(s)

$$G_{3}(s) = \frac{5\times10^{3}(s-215)(s+238)(s+1377)}{(s+23)(s+5300)(s+360 \pm j 1560)}$$

$$G_4(s) = \frac{(s-1570)(s+4300)(s+57\pm j235)}{(s+23)(s+5300)(s+360\pm j1560)}$$

The denominator determines the locations of the open-loop poles while the numerator determines the open-loop zeros. The poles are the starting points of the root locus which terminate at the corresponding zeros as the gain approaches to infinity. Observe both $G_3(s)$ and $G_4(s)$ have the same denominator and the poles are all in the left half plane, therefore, the open loop plant is a stable one. Only $G_4(s)$ is plotted on the complex plane.

$$G_{4}(s) = \frac{(s+57 \pm j 235)(s-1570)(s+4300)}{(s+23)(s+5300)(s+360 \pm j 1560)}$$

$$y_{m}$$

$$y_{3} = \frac{332}{3300} - \frac{235}{3300}$$

$$y_{15} = \frac{332}{3300} - \frac{235}{332}$$

$$y_{15} = \frac{331}{332} - \frac{331}{332}$$

$$y_{15} = \frac{331}{332} - \frac{331}{332} - \frac{331}{332}$$

$$y_{15} = \frac{331}{332} - \frac{331}{32} - \frac{331$$

Fig. 24 Root locus of G4(s)

zeros as the gain increases.

 $G_3(s)$ and $G_4(s)$ have poles located at -23, -5300, and -360. The latter is taken from the real part of the pair of complex root. The correspondent time constants are

$$T_1 = \frac{1}{23} = 0.0435 \text{ sec.}$$
 (96a)

$$T_2 = \frac{1}{360} = 0.00277 \text{ sec.}$$
 (96b)

$$T_3 = \frac{1}{5300} 2 0.000189 \text{ sec.}$$
 (96c)

The last two are comparatively insignificant. Thus, for a rough estimate, the synchronous generator with excitation voltage e_f as the only feed forward control effort, can be approximated as a first order system with a time constant of T_1 . Generally, T_2 can be included as subtransient time while T_1 as transient time constant. From eqs. (94a) and .94b), steady state gain of terminal voltage e_t over excitation voltage e_f can be derived.

Lim.
$$E_{t}(s) = c_{t}(s) = c_{t$$

Therefore, the approximated linear transfer function of e_t/e_f can be written as:

$$\frac{E_f(s)}{E_f(s)} = \frac{Kt}{(1+T_r s)(1+T_2 s)}$$

$$=\frac{1.7}{(1+0.04355)(1+0.002775)}$$
(98)

(iii) Frequency domain plot:

To plot $G_3(s)$ and $G_4(s)$ in the frequency domain, let

$$D(s) = 5^{4} + dps^{3} + cps^{2} + bps + ap$$

$$D(j\omega) = (ap - cp\omega^{2} + \omega^{4}) + j\omega(bp - dp\omega^{2})$$

$$= |D(j\omega)| |D(D)|$$
(99b)

where

$$|D(j\omega)| = \left[(ap - cp \omega^2 + \omega^4)^2 + \omega^2 (bp - dp \omega^2)^2 \right]^{\frac{1}{2}} (996)$$

$$O_D = \tan^{-1} \left[\frac{\omega(6p - dp \omega^2)}{ap - cp \omega^2 + \omega^4} \right] (99d)$$

Similarly:

$$N_3(s) = K_3(s^4 + d_{33}s^3 + C_3 s^2 + b_{33}s + a_{33}$$
 (100a)
 $N_3(j\omega) = N_3(j\omega) | D_3$ (100b)

where

$$|N_3(j\omega)| = K_3 \left[(q_{33} - (_{33}\omega^2 + \omega^4)^2 + \omega^2 (b_{33} - d_{33}\omega^2)^2 \right]^{\frac{1}{2}}$$

$$O_3 = tan^{-1} \left[\frac{\omega(b_{33} - d_{33}\omega^2)}{a_{33} - c_{33}\omega^2 + \omega^4} \right]$$
(100d)

$$N4(s)=K4(s^3+C44s^2+b44s+444)$$
 (101a)
 $N4(jw)=|N4(jw)|\Theta4$ (101b)

where $|N4(jw)| = |K4| (a_{44} - (a_{44} - (a_{44} - a_{44})^{2} + \omega^{2} (b_{44} - \omega^{2})^{2})^{\frac{1}{2}}$ $|S4 - t_{an}| = \left[\frac{\omega (b_{44} - \omega^{2})}{\Delta a_{44} - (a_{44} - a_{44})^{2}} \right]$ $|S4 - t_{an}| = \left[\frac{\omega (b_{44} - \omega^{2})}{\Delta a_{44} - (a_{44} - a_{44})^{2}} \right]$ $|S4 - t_{an}| = \left[\frac{\omega (b_{44} - \omega^{2})}{\Delta a_{44} - (a_{44} - a_{44})^{2}} \right]$ $|S4 - t_{an}| = \left[\frac{\omega (b_{44} - \omega^{2})}{\Delta a_{44} - (a_{44} - a_{44})^{2}} \right]$ $|S4 - t_{an}| = \left[\frac{\omega (b_{44} - \omega^{2})}{\Delta a_{44} - (a_{44} - a_{44})^{2}} \right]$

$$\frac{Ki Ni(s)}{D(s)} = d(i=3)$$

$$= g(i=4)$$

Fig. 25

Use the same data for the synchronous generator and impose the same assumptions as in the previous example. Plot the transfer functions with respect to frequency in Fig. IV. Consider G₃(s), the zero cross-over of the amplitude curve corresponds to a phase lag of 35°. That is a phase margin of 145°. G₃(s) is far from unstable. One must know that not all the poles and zeros are in the left half of the complex plane. The non-minimum phase characteristics prevent the direct approximation of the phase angle derived from the asymptotic plot of the amplitude curve.

(iv) Transfer function derivation from laboratory data:

Conversely, if a transient response curve is in hand, a transfer function can be derived from asymptotic plot in a frequency domain curve. The break-away points of two asymptotes with 20 db/decade decay difference determines the time constants. The order of the transfer function depends on the need of accuracy in describing the characteristics. It must be noted that a time domain plot which is the usual case of laboratory data, should be transformed into frequency domain plot before applying the approximation technique. The abscissa should be the ratio of output versus input in decibel while the ordinate, frequency on radians per second. Suppose an actual curve is plotted in Fig. D. Three asymptotic lines are approximated. The zero db/decade line is at 4.6 db which determines the gain of the transfer function while the two break-away points at

The transfer function becomes -

$$\frac{\zeta_{1}(s)}{(1+T_{1}s)(1+T_{2}s)} = \frac{\frac{1}{20} \operatorname{antilog}_{10}(4.6)}{(1+\frac{1}{23}s)(1+\frac{1}{360}s)} - \frac{1.7}{(1+0.0435s)(1+0.00277s)} (98a)$$

(v) Two manipulated variables:

If both $\Delta_{\mathbf{w}}$ and $\Delta_{\mathbf{e_f}}$ are considered simultaneously,

$$\begin{bmatrix} \Delta id \\ \Delta ig \end{bmatrix} = \begin{bmatrix} G_{1}(s) \\ G_{2}(s) \end{bmatrix} \begin{bmatrix} \Delta e_{f} \end{bmatrix} + \begin{bmatrix} \Delta \end{bmatrix}^{-1}$$

$$Rf ig (Lm_{f} + L_{L}) + sLmd ig (Lm_{f} + L_{L})$$

$$Rf \begin{cases} Lmd i_{f} - i_{d}(Lmd + L_{L}) \end{cases} + sLmd \begin{cases} Lmd i_{f} - i_{d}(Lmd + L_{L}) \end{cases} \begin{bmatrix} \Delta \omega \end{bmatrix}$$

$$= \begin{bmatrix} G_1(s) \\ G_2(s) \end{bmatrix} \begin{bmatrix} \Delta e_f \end{bmatrix} + \begin{bmatrix} G_5(s) \\ G_6(s) \end{bmatrix} \begin{bmatrix} \Delta \omega \end{bmatrix} \tag{102}$$

where

$$G_{5}(s) = \frac{s^{3}d_{5} + s^{2}_{c5} + so_{5} + a_{5}}{s^{4}e_{p} + s^{3}d_{p} + s^{2}c_{p} + so_{p} + a_{p}}$$
 (1024)

$$G_{6(5)} = \frac{5^{3} d_{6} + 5^{2} c_{6} + 5b_{6} + a_{6}}{5^{4} e_{p} + 5^{3} d_{p} + 5^{2} c_{p} + 50p + a_{p}}$$
 (1026)

$$\begin{bmatrix} \Delta e_d \\ \Delta e_q \end{bmatrix} = \begin{bmatrix} G_3(s) \\ G_4(s) \end{bmatrix} \begin{bmatrix} \Delta e_f \end{bmatrix} + \begin{bmatrix} G_7(s) \\ G_8(s) \end{bmatrix} \begin{bmatrix} \Delta \omega \end{bmatrix} \tag{103}$$

where

$$G_7(s) = \frac{s^4 e_7 + s^3 d_7 + s^2 c_7 + s b_7 + a_7}{s^4 e_p + s^3 d_p + s^2 c_p + s b_p + a_p}$$
 (1034)

$$G_{8}(s) = \frac{5^{4}e_{8} + 5^{3}d_{8} + 5^{2}e_{8} + 5b_{8} + \alpha_{8}}{5^{4}e_{p} + 5^{2}d_{p} + 5^{2}e_{p} + 5b_{p} + \alpha_{p}}$$
 (1036)

Again, approximate the coefficients by assuming

$$ds = L^2 m d L^2 m q I q \qquad (104a)$$

$$d_b = L_L L'md (\bar{i}_{\uparrow} - \bar{i}_{\downarrow}) \qquad (104e)$$

$$a_b = R_f^2 \left(R_L L_m d \left(\bar{i}_f - \bar{i}_d \right) - \bar{\omega}_g L_m^2 \bar{i}_g \right) \qquad (104h)$$

$$e_7 = L_L(ds - epiq) \tag{104i}$$

$$d_{7} = R_{L} d_{5} + L_{L} (c_{5} - \overline{u}_{g} d_{5} - d_{p} \overline{i}_{g}) \qquad (104)$$

$$c_{7} = R_{L} c_{5} + L_{L} \cdot b_{5} - \overline{u}_{g} c_{5} - c_{p} \overline{i}_{g}) \qquad (104)$$

$$b_{7} = R_{L} b_{5} + L_{L} (a_{5} - \overline{u}_{g} b_{5} - b_{p} \overline{i}_{g}) \qquad (104)$$

$$a_{7} = R_{L} a_{5} - L_{L} (\overline{u}_{g} a_{b} + a_{p} \overline{i}_{g}) \qquad (104)$$

$$c_{8} = L_{L} (d_{b} + e_{p} \overline{i}_{d}) \qquad (104)$$

$$d_{6} = R_{L} d_{5} + L_{L} (c_{5} + \overline{u}_{g} d_{5} + d_{p} \overline{i}_{d}) \qquad (104)$$

$$c_{9} = R_{L} c_{5} + h_{L} (b_{5} + \overline{u}_{g} c_{5} + c_{p} \overline{i}_{d}) \qquad (104)$$

$$b_{8} = R_{L} b_{5} + L_{L} (a_{5} + \overline{u}_{g} b_{5} + a_{p} \overline{i}_{d}) \qquad (104)$$

$$a_{6} = R_{L} a_{5} + L_{L} (\overline{u}_{g} a_{5} + 2 \overline{p} \overline{i}_{d}) \qquad (104)$$

$$c_{p} = L_{m} d L_{m} L_{L} (L_{m} d_{L} + L_{m} R_{L}) \qquad (104)$$

$$d_{p} = L_{m} d L_{m} L_{m} (R_{f} + R_{L}) + L_{L} (L_{m} d_{L} + L_{m} R_{L}) \qquad (104)$$

$$c_{p} = L_{m} d L_{m} (R_{f} R_{L} + \overline{u}_{g}^{2} L_{m} d_{L}) \qquad (104)$$

$$c_{p} = L_{m} d [L_{m} (R_{f} R_{L} + \overline{u}_{g}^{2} L_{m} d_{L}) \qquad (104)$$

$$bp = R_f \left(R_L \left(2 Lmd R_L + R_f Lmd + Lmq R_f \right) + \overline{\omega}_g^2 Lmd Lmq \right)$$

$$(104v)$$

$$ap = R_f^2 \left(R_L^2 + \overline{\omega}_g^2 Lmd Lmq \right)$$

$$(04w)$$

The increments of the variables have to be small for the formulation to be valid. The result is an interacting system.

Fig. 26 Linearization of two control variables

(vi) Closed loop control:

Gs (5)= transfer function of synchronous generator

Gc(S) = controller

H(S) = measuring elements

T(S) = closed-loop transfer function

where

$$T(s) = \frac{G_c(s)G_s(s)}{1 + H(s)G_c(s)G_s(s)}$$

Assume:

It is desired to find the maximum permissible gain K for a stable operation. Hurwitz criterion states that a characteristic equation

All the determinants

must be positive for a stable system. The characteristic equation of T(s) is

i.e.,

$$(1+K)5^{4}+(b-2.73K)10^{7}5^{3}+(6.5-6.2K)10^{6}5^{2}$$

+ $(138-6K)10^{8}5+(3.08-3.84K)10''=0$

Set the determinants equal to zero for critical condition.

$$(138-6K)10^{8} \qquad (3.08-3.84K)10'' = 0$$

$$(6-2.73K)10^{3} \qquad (6.5-6.2K)10^{6}$$

i.e.,
$$K^2 - 32.6K + 33.3 = 6$$

 $K = 31.6$ or 1.05

Since both values are valid, it is desirable to choose $K_2 = 31.6$

$$(1.38-6K)10^{8}$$
 $(3.08-3.84K)10''$ 0
 $(6-2.73K)10^{3}$ $(6.5-6.2K)10^{6}$ $(1.38-6K)10^{8}$
0 1+K $(6-2.73K)10^{3}$

i.e.,
$$K^{3}=38.6K^{2}+135.5K-48.6=0$$

$$K=34.76, 3.38 \text{ or } 48.6$$

It is desirable to have $K_3 = 34.76$

To compare with the KS obtained from the three determinants, in order to satisfy the criterion, the smallest value should be chosen. That is $K = K_1 = 23$.

(vii) Sensitivity:

Since any component of the same kind may not be identical due to various reasons, it is beneficial to learn the variation of total performance with respect to the deviation of characteristics of a certain component. It can be the parameters of the plant, the gain of the amplifier or others. For instance, one would like to know the effect of K on T(s) in the last example. Define sensitivity as

$$S_{K}^{T} = \frac{d(\ln T)}{d(\ln K)}$$

$$= \frac{d[\ln (K_{95})]}{d(\ln K)}$$

$$= \frac{1}{1+K_{95}}$$

The smaller the value of S_K^T , the less effect of variation of K on T(s). However, in this example, the sensitivity is almost linearly related to K because $KG_S >> 1$.

(viii) Degrees of Freedom:

By investigating the closed-loop transfer function

$$T(s) = \frac{G_c(s)G_s(s)}{1 + H(s)G_c(s)G_s(s)}$$

assuming the plant $G_s(s)$ is fixed, one can adjust the controller $G_c(s)$ or feedback element H(s) respectively to obtain a desired T(s). Thus, there is only one degree of freedom. If $G_c(s)$ and H(s) are adjusted simultaneously, there will be two degrees of freedom. The latter is more flexible and many a time the implementation is much easier to be realized.

(ix) Model Approach:

Another method to enforce a specified transient response of a synchronous generator is by introducing a model which describes the specification precisely. The block diagram will be as follows:

Let
$$H \cong 1$$
 and make $|G_C| > 7$

$$\frac{O}{I} = Gm$$

where

O(s) = output

I(s) = input

 $G_{m}(s) = transfer function of model$

ANALOG COMPUTER SIMULATION OF SYNCHRONOUS GENERATOR WITH UNBALANCED LOAD